Skip to main content
Log in

Microfluidic lab-on-a-chip for microbial identification on a DNA microarray

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A lab-on-a-chip for the rapid identification of microbial species has been developed for a water monitoring system. We employed highly parallel DNA microarrays for the direct profiling of microbial populations in a sample. For the integration and minimization of the DNA microarray protocols for bacterial identification, rRNA was selected as a target nucleotide for probe:target hybridization. In order to hybridize target rRNA onto the probe oligonucleotide, intact rRNA extracted fromE. coli rRNA was fragmented via chemical techniques in the lab-on-a-chip platform. The size of fragmented rRNA was less than 400 base pairs, which was confirmed by polyacrylamide gel electrophoresis. The fragmented rRNA was also labeled using fluorescent chemicals. The lab-on-a-chip for fragmentation and labeling includes a PDMS chaotic mixer for efficient mixing, operated by flow pressure. In addition, the fragmented rRNA was hybridized successfully on a DNA microarray with sample recirculation on a microfluidic platform. Our fragmentation and labeling technique will have far-reaching applications, which require rapid but complicated chemical genetic material processing on a lab-on-a-chip platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boom, R., C. J. A. Sol, M. M. M. Salimans, C. L. Jansen, P. M. E. Wertheim-van Dillen, and J. van der Noordaa (1990) Rapid and simple method for purification of nucleic acids.J. Clin. Microbiol. 28: 495–503.

    CAS  Google Scholar 

  2. Oh, M.-K., D. R. Scoles, and S.-M. Pulst, (2005) DNA microarray analysis of immediate response to EGF treatment in rat schwannoma cells.Biotechnol. Bioprocess Eng. 10: 444–450.

    Article  CAS  Google Scholar 

  3. Bavykin, S. G., J. P. Akowski, V. M. Zakhariev, V. E. Barsky, A. N. Perov, and A. D. Mirzabekov, (2001) Portable system for microbial sample preparation and oligonucleotide microarray analysis.Appl. Environ. Microbiol. 67: 922–928.

    Article  CAS  Google Scholar 

  4. Kelly, J. J., B. K. Chernov, I. Tovstanovsky, A. D. Mirzabekov, and S. G. Bavykin (2002) Radical-generating coordination complexes as tools for rapid and effective fragmentation and fluorescent labeling of nucleic acids for microchip hybridization.Anal. Biochem. 311: 103–118.

    Article  CAS  Google Scholar 

  5. Proudnikov, D., E. Timofeev, and A. Mirzabekov (1998) Immobilization of DNA in polyacrylamide gel for the manufacture of DNA and DNA-oligonucleotide microchips.Anal. Biochem. 259: 34–41.

    Article  CAS  Google Scholar 

  6. Fantroussi, S. E., H. Urakawa, A. E. Bernhard, J. J. Kelly, P. A. Noble, H. Smidt, G. M. Yershov, and D. A. Stahl (2003) Direct profiling of environmental microbial populations by thermal dissociation analysis of native rRNAs hybridized to oligonucleotide microarrays.Appl. Environ. Microbiol. 69: 2377–2382.

    Article  CAS  Google Scholar 

  7. Choi, W., and J.-K. Park (2006) A bio-fluidic device for adaptive sample pretreatment and its application to measurements ofEscherichia coli concentrations.Biotechnol. Bioprocess Eng. 11: 54–60.

    Article  CAS  Google Scholar 

  8. Hatch, A., A. E. Kamholz, K. R. Hawkins, M. S. Munson, E. A. Shilling, B. H. Weigl, and P. Yager (2001) A rapid diffusion immunoassay in a T-sensor.Nat. Biotechnol. 19: 461–465.

    Article  CAS  Google Scholar 

  9. Kim, Y.-B., J.-H. Park, W.-J. Chang, Y.-M. Koo, E.-K. Kim, and J.-H. Kim (2006) Statistical optimization of the lysis agents for gram-negative bacterial cells in a microfluidic device.Biotechnol. Bioprocess Eng. 11: 288–292.

    Article  CAS  Google Scholar 

  10. Lee, C.-S., S.-H. Lee, Y.-G. Kim, C.-H. Choi, Y.-K. Kim, and B.-G. Kim (2006) Biochemical reactions on a microfluidic chip based on a precise fluidic handling method at the nanoliter scale.Biotechnol. Bioprocess Eng. 11: 146–153.

    Article  Google Scholar 

  11. Stroock, A. D., S. K. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, and G. M. Whitesides (2002) Chaotic mixer for microchannelsScience 295: 647–651.

    Article  CAS  Google Scholar 

  12. Sudarsan, A. P., and V. M. Ugaz (2006) Multivortex micromixing.Proc. Natl. Acad. Soc. USA 103: 7228–7233.

    Article  CAS  Google Scholar 

  13. Lee, H. H., J. Smoot, Z. McMurray, D. A. Stahl, and P. Yager (2006) Recirculating flow accelerates DNA microarray hybridization in a microfluidic deviceLab Chip 6: 1163–1170.

    Article  CAS  Google Scholar 

  14. Alm, E. W., D. B. Oerther, N. Larsen, D. A. Stahl, and L. Raskin (1996) The oligonucleotide probe database.Appl. Environ. Microbiol. 62: 3557–3559.

    CAS  Google Scholar 

  15. Kim, Y. S., B. C. Kim, J. H. Lee, J. Kim, and M. B. Gu (2006) Specific detection of DNA using quantum dots and magnetic beads for large volume samples.Biotechnol. Bioprocess Eng. 11: 449–454.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Ho Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H.H., Yager, P. Microfluidic lab-on-a-chip for microbial identification on a DNA microarray. Biotechnol. Bioprocess Eng. 12, 634–639 (2007). https://doi.org/10.1007/BF02931079

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931079

Keywords

Navigation