Skip to main content
Log in

Effects of mechanical stimulation on the proliferation of bone marrow-derived human mesenchymal stem cells

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

To support and enhance thein vitro growth and activity of mesenchymal stem cells (MSCs), the cell culture medium may be supplemented with various proteins and factors to mimic the physiological environment in which the cells optimally proliferate and differentiate. In this study, the effects of mechanical factors on cellular metabolic responses were investigated experimentally using a bioreactor. The effects of various chemical factors, such as growth factors, cytokines, and hormones, were also investigated. Based on previous reports demonstrating the important roles of mechanical factors in the growth and activity of MSCs, we sought to evaluate the effects of mechanical stimuli on the proliferation of bone marrow-derived MSCs using a cell training bioreactor that imposed cyclic mechanical stretch, with parameters of 240 min/day, 0.03 Hz, and 5–15% strain. The application of cyclic stretch (5–15% strain) to the MSCs enhanced their proliferation during the early stage (3 days), but not the late stage (14 days), of batch culture. Mechanical stretch did not increase the release of lactate dehydrogenase (LDH) from the MSCs during culture. Appropriate levels of mechanical stretch (5–10% strain) increased collagen synthesis, but did not alter MSC surface antigen expression. It is thought that the appropriate level of mechanical stretch was able to serve as a potent positive modulator of MSC proliferation during the initial stages of culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruder, S. P., N. Jaiswal, and S. E. Haynesworth (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation.J. Cell Biochem. 64: 278–294.

    Article  CAS  Google Scholar 

  2. Jiang, Y., B. N. Jahagirdar, R. L. Reinhardt, R. E. Schwartz, C. D. Keene, X. R. Ortiz-Gonzalez, M. Reyes, T. Lenvik, T. Lund, M. Blackstad, J. Du, S. Aldrich, A. Lisberg, W. C. Low, D. A. Largaespada, and C. M. Verfaillie (2002) Pluripotency of mesenchymal stem cells derived from adult marrow.Nature 418: 41–49.

    Article  CAS  Google Scholar 

  3. Grove, J. E., E. Bruscia, and D. S. Krause (2004) Plasticity of bone marrow-derived stem cells.Stem Cells 22: 487–500.

    Article  Google Scholar 

  4. Bossolasco, P., S. Corti, S. Strazzer, C. Borsotti, R. Del Bo, F. Fortunato, S. Salani, N. Quirici, F. Bertolini, A. Gobbi, G. L. Deliliers, G. Pietro Comi, and D. Soligo (2004) Skeletal muscle differentiation potential of human adult bone marow cells.Exp. Cell Res. 295: 66–78.

    Article  CAS  Google Scholar 

  5. Mackay, A. M., S. C. Beek, J. M. Murphy, F. P. Barry, C. O. Chichester, and M. F. Pittenger (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from bone marrow.Tissue Eng. 4: 415–428.

    Article  CAS  Google Scholar 

  6. Wagner, W., F. Wein, A. Seckinger, M. Frankhauser, U. Wirkner, U. Krause, J. Blake, C. Schwager, V. Eckstein, W. Ansorge, and A. D. Ho (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood.Exp. Hematol. 33: 1402–1416.

    Article  CAS  Google Scholar 

  7. Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak, (1999) Multilineage potential of adult human mesenchymal stem cells.Science 284: 143–147.

    Article  CAS  Google Scholar 

  8. Young, R. G., D. L. Butler, W. Weber, A. I. Caplan, S. L. Gordon, and D. J. Fink (1998) Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair.J. Orthop. Res. 16: 406–413.

    Article  CAS  Google Scholar 

  9. Shin, H. C., Y. S. Choi, S. M. Lim, C. W. Lee, and D. I. Kim (2006) Effects of silkworm hemolymph and cartilage-specific extracellular matrices on chondrocytes and periosteum-derived progenitor cells.Biotechnol. Bioprocess Eng. 11: 364–367.

    Article  CAS  Google Scholar 

  10. Ahn, J. I., I. K. Jang, D. H. Lee, Y. K. Seo, H. H. Yoon, Y. H. Shin, J. C. Kim, K. Y. Song, H. G. Lee, E. K. Yang, K. H. Kim, and J. K. Park (2005) A comparison of lyophilized amniotic membrane with cryopreserved amniotic membrane for the reconstruction of rabbit corneal epithelium.Biotechnol. Bioprocess Eng. 10: 262–269.

    Article  CAS  Google Scholar 

  11. Iyer, V. R., M. B. Eisen, D. T. Ross, G. Schuler, T. Moore, J. C. Lee, J. M. Trent, L. M. Staudt, J. Hudson, Jr., M. S. Boguski, D. Lashkari, D. Shalon, D. Botstein, and P. O. Brown (1999) The transcriptional program in the response of human fibroblasts to serum.Science 283: 83–87.

    Article  CAS  Google Scholar 

  12. Martin, I., V. P. Shastri, R. F. Padera, J. Yang, A. J. Mackay, R. Langer, G. Vunjak-Novakovic, and L. E. Freed (2001) Selective differentiation of mammalian bone marrow stromal cells cultured on threc-dimensional polymer foams.J. Biomed. Mater. Res. 55: 229–235.

    Article  CAS  Google Scholar 

  13. Marui, T., C. Niyibizi, H. I. Georgescu, M. Cao, K. W. Kavalkovich, R. E. Levine, and S. L. Woo (1997) Effect of growth factors on matrix synthesis by ligament fibroblasts.J. Orthop. Res. 15: 18–23.

    Article  CAS  Google Scholar 

  14. Choi, Y. S., S. M. Lim, H. C. Shin, C. W. Lee, and D. I. Kim (2006) Chondrogenic properties of human periosteum-derived progenitor cells (PDPCs) embedded in a thermoreversible gelation polymer (TGP).Biotechnol. Bioprocess Eng. 11: 550–552.

    Article  CAS  Google Scholar 

  15. Eagle, H. (1955) Nutrition needs of mammalian cells in tissue culture.Science 122: 501–514.

    Article  CAS  Google Scholar 

  16. Kang, K. A., S. Chae, K. H. Lee, R. Zhang, M. S. Jung, H. J. You, J. S. Kim, and J. W. Hyun (2005) Antioxidant effect of homogentisic acid on hydrogen peroxide induced oxidative stress in human lung fibroblast cells.Biotechnol. Bioprocess Eng. 10: 556–563.

    Article  CAS  Google Scholar 

  17. Yang, L., B. Zhang, K. Toku, N. Maeda, M. Sakanaka, and J. Tanaka (2000) Improvement of the viability of cultured rat neurons by the non-essential amino acids L-serine and glycine that upregulates expression of the anti-apoptotic gene product Bel-w.Neurosci. Lett. 295: 97–100.

    Article  CAS  Google Scholar 

  18. Park, H., S. An, and T. Choe (2006) Change of insulin-like growth factor gene expression in Chinese hamster ovary cells cultured in serum-free media.Biotechnol. Bioprocess Eng. 11: 319–324.

    Article  CAS  Google Scholar 

  19. Lee, A. A., T. Delhaas, L. K. Waldman, D. A. MacKenna, F. J. Villarreal, and A. D. McCulloch (1996) An equibiaxial strain system for cultured cells.Am. J. Physiol. 271: C1400-C1408.

    CAS  Google Scholar 

  20. Terracio, L., A. Tingstrom, W. H. Peters, 3rd, and T. K. Borg (1990) A potential role for mechanical stimulation in cardiac development.Ann. N. Y. Acad. Sci. 588: 48–60.

    Article  CAS  Google Scholar 

  21. Vandenburgh, H. H. and P. Karlisch (1989) Longitudinal growth of skeletal myotubesin vitro in a new horizontal mechanical cell stimulator.In Vitro Cell Dev. Biol. 25: 607–616.

    Article  CAS  Google Scholar 

  22. van Griensven, M., J. Zeichen, M. Skutek, T. Barkhausen, C. Krettek, and U. Bosch (2003) Cyclic mechanical strain induces NO production in human patellar chanical strain induces NO production in human patellar tendon fibroblasts a possible role for remodelling and pathological transformation.Exp. Toxicol. Pathol. 54: 335–338.

    Article  Google Scholar 

  23. Toyoda, T., H. Matsumoto, K. Fujikawa, S. Saito, and K. Inoue (1998) Tensile load and the metabolism of anterior cruciate ligament cells.Clin. Orthop. Relat. Res. 353: 247–255.

    Article  Google Scholar 

  24. Kim, S. G., T. Akaike, T. Sasagawa, Y. Atomi, and H. Kurosawa (2002) Gene expression of type I and type III collagen by mechanical stretch in anterior cruciate ligament cells.Cell Struct. Funct. 27: 139–144.

    Article  CAS  Google Scholar 

  25. Howard, P. S., U. Kucich, R. Taliwal, and J. M. Korostoff (1998) Mechanical forces alter extracellular matrix synthesis by human periodontal ligament fibroblasts.J. Periodont. Res. 33: 500–508.

    Article  CAS  Google Scholar 

  26. Breen, E. C. (2000) Mechanical strain increases type I collagen expression in pulmonary fibroblastsin vitro.J. Appl. Physiol. 88: 203–209.

    CAS  Google Scholar 

  27. Hsieh, A. H., C. M. Tsai, Q. J. Ma, T. Lin, A. J. Banes, F. J. Villarreal, W. H. Akeson, and K. L. P. Sung (2000) Time-dependent increases in type-III collagen gene expression in medial collateral ligament fibroblasts under cyclic strains.J. Orthop. Res. 18: 220–227.

    Article  CAS  Google Scholar 

  28. Berry, C. C., C. Cacou, D. A. Lee, D. L. Bader, and J. C. Shelton (2003) Dermal fibroblasts respond to mechanical conditioning in a strain profile dependent manner.Biorheology 40: 337–345.

    CAS  Google Scholar 

  29. Sambajon, V. V., J. E. Cillo, Jr., R. J. Gassaner, and M. J. Buckley (2003) The effects of mechanical strain on synovial fibroblasts.J. Oral. Maxill. Surg. 61: 707–712.

    Article  Google Scholar 

  30. Lee, C. H., H. J. Shin, I. H. Cho, Y. M. Kang, I. A. Kim, K. D. Park, and J. W. Shin (2005) Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast.Biomaterials 26: 1261–1270.

    Article  CAS  Google Scholar 

  31. Yoshino, H., I. Morita, S. I. Murota, and I. Ishikawa (2003) Mechanical stress induces production of angiogenic regulators in cultured human gingival and periodontal ligament fibroblasts.J. Periodont. Res. 38: 405–410.

    CAS  Google Scholar 

  32. Lee, W. C., T. M. Maul, D. A. Vorp, J. P. Rubin, and K. G. Marra (2007) Effects of uniaxial cyclic strain on adipose-derived stem cell morphology, proliferation, and differentiation.Biomech. Model. Mechanobiol. 6: 265–273.

    Article  Google Scholar 

  33. Simmons, C. A., S. Matlis, A. J. Thornton, S. Chen, C. Y. Wang, and D. J. Mooney (2003) Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway.J. Biomech. 36: 1087–1096.

    Article  Google Scholar 

  34. Lee, I. C., J. H. Wang, Y. T. Lee, and T. H. Young (2007) The differentiation of mesenchymal stem cells by mechanical stress or/and co-culture system.Biochem. Biophys. Res. Commun. 352: 147–152.

    Article  CAS  Google Scholar 

  35. Weyts, F. A., B. Bosmans, R. Niesing, J. P. van Leeuwen, and H. Weinans (2003) Mechanical control of human osteoblast apoptosis and proliferation in relation to differentiation.Calcif. Tissue Int. 72: 505–512.

    Article  CAS  Google Scholar 

  36. Koike, M., H. Shimokawa, Z. Kanno, K. Ohya, and K. Soma (2005) Effects of mechanical strain on proliferation and differentiation of bone marrow stromal cell line ST2.J. Bone Miner. Metab. 23: 219–225.

    Article  Google Scholar 

  37. Park, S. A., I. A. Kim, Y. J. Lee, J. W. Shin, C. R. Kim, J. K. Kim, Y. I. Yang, and J. W. Shin (2006) Biological responses of ligament fibroblasts and gene expression profiling on micropatterned silicone substrates subjected to mechanical stimuli.J. Biosci. Bioeng. 102: 402–412.

    Article  CAS  Google Scholar 

  38. Yang, G., R. C. Crawford, and J. H. Wang (2004) Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions.J. Biomech. 37: 1543–1550.

    Article  Google Scholar 

  39. Lee, E. K., J. S. Lee, H. S. Park, C. H. Kim, Y. I. Gin, and Y. S. Son (2005) Cyclic stretch stimulates cell proliferation of human mesenchymal stem cells but do not induce their apoptosis and differentiation.Tissue Eng. Regen. Med. 2: 29–33.

    Google Scholar 

  40. Saha, S., L. Ji, J. J. de Pablo, and S. P. Palecek (2006) Inhibition of human embryonic stem cell difterentiation by mechanical strain.J. Cell Physiol. 206: 126–137.

    Article  CAS  Google Scholar 

  41. Morrow, D., C. Sweeney, Y. A. Birney, P. M. Cummins, D. Walls, E. M. Redmond, and P. A. Cahill (2005) Cyclic strain inhibits Notch receptor signaling in vascular smooth muscle cellsin vitro.Circ. Res. 96: 567–575.

    Article  CAS  Google Scholar 

  42. Hipper, A. and G. Isenberg (2000) Cyclic mechanical strain decreases the DNA synthesis of vascular smooth muscle cells.Pflugers Arch. 440: 19–27.

    CAS  Google Scholar 

  43. Hamilton, D. W., T. M. Maul, and D. A. Vorp (2004) Characterization of the response of bone marrow-derived progenitor cells to cyclic strain: implications for vascular tissue-engineering applications.Tissue Eng. 10: 361–369.

    Article  CAS  Google Scholar 

  44. Hannafin, J. A., E. A. Attia, R. Henshaw, R. F. Warren, and M. M. Bhargava (2006) Effect of cyclic strain and plating matrix on cell proliferation and integrin expression by ligament fibroblasts.J. Orthop. Res. 24: 149–158.

    Article  CAS  Google Scholar 

  45. Choi, K. M., Y. K. Seo, H. H. Yoon, S. Y. Kwon, H. S. Lee, Y. S. Park, Y. Son, K. Y. Song, Y. J. Kim and J. K. Park (2006) Differentiation of human bone marrow-derived mesenchymal stem cell into fibroblast-like cellin vitro by mechanical tension.Tissue Eng. Regen. Med. 3: 423–431.

    Google Scholar 

  46. Robinson, M. J. and M. H. Cobb (1997) Mitogen-activated protein kinase pathways.Curr. Opin. Cell Biol. 9: 180–186.

    Article  CAS  Google Scholar 

  47. Morino, N., T. Mimura, K. Hamasaki, K. Tobe, K. Ueki, K. Kikuchi, K. Takehara, T. Kadowaki, Y. Yazaki, and Y. Nojima (1995) Matrix/integrin interaction activates the mitogen-activated protein kinase, p44erk-1 and p42erk-2.J. Biol. Chem. 270: 269–273.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Keug Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, KM., Seo, YK., Yoon, HH. et al. Effects of mechanical stimulation on the proliferation of bone marrow-derived human mesenchymal stem cells. Biotechnol. Bioprocess Eng. 12, 601–609 (2007). https://doi.org/10.1007/BF02931075

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931075

Keywords

Navigation