Skip to main content

Advertisement

Log in

Microbial degradation of polycyclic aromatic hydrocarbons in soil by bacterium-fungus co-cultures

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Two fungi and the phenanthrene-degrading bacterial strainRhodococcus sp. IC10 were used as inocula for the bioremediation of petroleum hydrocarbon-contaminated soil from a manufactured gas plant area. The two fungi, which were previously isolated from different hydrocarbon-contaminated soil samples, were identified asAspergillus terreus andPenicillium sp. In addition, two types of co-cultures which consist of fungal species includingA. terreus orPenicilium sp. withRhodococcus sp. IC10 were applied. After a 10-week incubation period, the concentrations of anthracene, phenanthrene, and pyrene were totally biodegraded by days 68, 54, and 64, for the 16 polycyclic aromatic hydrocarbons (PAH's) tested. The ecotoxicity of the soil after bioremediation did not show any effect on the survival ofDaphnia magna (24 h-old-daphnids). However, the toxicity on seed germination ofBrassica alba and the oxidoreductase activity ofBacillus cereus declined after 5- and 10-weeks of incubation, respectively. Co-cultures ofPenicillium sp. andRhodococcus sp. IC 10 revealed the best efficiency at reducing ecotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Mueller, J., C. Cerniglia, and P. Pritchard (1997) Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons. pp. 125–194. In: R. Crawford and D. Crawford (eds.).Bioremediation: Principles and Practices. Cambridge University Press, New York, NY, USA.

    Google Scholar 

  2. Mueller, J. G., P. J. Chapman, and P. H. Pritchard (1989) Creosote-contaminated sites. Their potential for bioremediation.Environ. Sci. Technol. 23: 1197–1201.

    Article  CAS  Google Scholar 

  3. Leon, V. and M. Kumar (2005) Biological upgrading of heavy crude oil.Biotechnol. Bioprocess Eng 10: 471–481.

    Article  CAS  Google Scholar 

  4. Pahlman, R. and O. Pelkonen (1987) Mutagenicity studies of different polycyclic aromatic hydrocarbons: The significance of enzymatic factors and molecular structure.Carcinogenesis 8: 773–778.

    Article  CAS  Google Scholar 

  5. White, Jr., K. L. (1996) An overview of immunotoxicology and carcinogenic polycyclic aromatic hydrocarbons.Environ. Carcinog. Rev. 4: 163–202.

    Google Scholar 

  6. Wilson, S. C. and K. C. Jones (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): A review.Environ. Pollut. 81: 229–249.

    Article  CAS  Google Scholar 

  7. Ahn, T. S., G. H. Lee, and H. G. Song (2005) Biodegradation of phenanthrene by psychrotrophic bacteria from Lake Baikal.J. Microbiol. Biotechnol. 15: 1135–1139.

    CAS  Google Scholar 

  8. Catallo, W. J. and R. J. Portier (1992) Use of indigenous and adapted microbial assemblages in the removal of organic chemicals from soils and sediments.Wat. Sci. Technol. 25: 229–237.

    CAS  Google Scholar 

  9. Chaneau, C. H., J. Morel, J. Dupont, E. Bury, and J. Oudot (1999) Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil.Sci. Total Environ. 227: 237–247.

    Article  Google Scholar 

  10. Wild, S. R. and K. C. Jones (1993) Bioloiical and abiotic losses of polynuclear aromatic hydrocarbons (PAHs) from soils freshly amended with sewage sludge.Environ. Toxicol. Chem. 12: 5–12.

    Article  CAS  Google Scholar 

  11. Cerniglia, C. E. (1992) Biodegradation of polycyclic aromatic hydrocarbons.Biodegradation 3: 351–368.

    Article  CAS  Google Scholar 

  12. Han, K., Y. T. Jung, and S. Y. Son (2003) Phylogenetic analysis of phenanthrene-degradingSphingomonas.J. Microbiol. Biotechnol. 13: 942–948.

    CAS  Google Scholar 

  13. Lee, D. S., M. W. Lee, S. H. Woo, and J. M. Park (2005) Effects of salicylate and glucose on biodegradation of phenanthrene byBurkholderia cepacia PMO7J. Microbiol. Biotechnol. 15: 859–865.

    CAS  Google Scholar 

  14. Dyksterhouse, S. E., J. P. Gray, R. P. Herwig, J. C. Lara, and J. T. Staley (1995)Cycloclasticus pigetti gen. nov., and aromatic hydrocarbon-degradation bacterium from marine sediments.Appl. Environ. Microbiol. 45: 116–123.

    CAS  Google Scholar 

  15. Dyksterhouse, S. E., J. P. Gray, R. P. Herwig, J. C. Lara, and H. T. Staley (1995)Cycloclasticus pugetii gen, nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments.Int. J. Syst. Bacteriol. 45: 116–123.

    CAS  Google Scholar 

  16. Boldrin, B., A. Tiehm, and C. Fritzsche (1993) Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by aMycobacterium sp.Appl. Environ. Microbiol. 59: 1927–1930.

    CAS  Google Scholar 

  17. Dagher, F., E. Deziel, P. Lirette, G. Paquette, J. G. Bisaillon, and R. Villemur (1997) Comparative study of five polycyclic aromatic hydrocarbon degrading bacterial strains isolated from contaminated soils.Can. J. Microbiol. 43: 368–377.

    Article  CAS  Google Scholar 

  18. Kastner, M., M. Breuer-Jammali, and B. Mahro (1994) Enumeration and characterization of the soil microflora from hydrocarbon-contaminated soil sites able to mineralize polycyclic aromatic hydrocarbons (PAH).Appl. Microbiol. Biotechnol. 41: 267–273.

    Article  Google Scholar 

  19. Lloyd-Jones, G. and D. W. Hunter (1997) Characterization of fluoranthene- and pyrene-degrading Mycobacterium-like strains by RAPD and SSU sequencing.FEMS Microbiol. Lett. 153: 51–56.

    Article  CAS  Google Scholar 

  20. Schocken, M. J. and D. T. Gibson (1984) Bacterial oxidation of the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene.Appl. Environ. Microbiol. 48: 10–16.

    CAS  Google Scholar 

  21. Kobayashi, H. and B. E. Rittmann (1982) Microbial removal of hazardous organic compounds.Environ. Sci. Technol. 16: 170–183.

    Article  Google Scholar 

  22. Bumpus, J. (1998) Perspectives on the use of white rot fungi in bioremediation technologies. Vol. Il. pp. 67–109. In: K. Subhas and R. L. Sikdar-Irvine (eds.).Bioremediation: Principles and Practices Biodegradation Technology Developments. Technomic Publishing Co., Lancaster, PA, USA.

    Google Scholar 

  23. Mester, T., M. Pena, and J. A. Field (1996) Nutrient regulation of extracellular peroxidases in the white rot fungus,Bjerkandera sp. strain BOS55.Appl. Microbiol. Biotechnol. 44: 778–784.

    CAS  Google Scholar 

  24. Fernandez-Sanchez, J. M., R. Rodriguez-Vazquez, G. Ruiz-Aguilar, and P. J. J. Alvarez (2001) PCB biodegradation in aged contaminated soil: Interactions between exogenousPhanerochaete chrysosporium and indigenous microorganisms.J. Environ. Sci. Health A 36: 1145–1162.

    Article  CAS  Google Scholar 

  25. Kim, J. D., S. H. Shim, and C. G. Lee (2005) Degradation of phenanthrene by bacterial strains isolated from soil in oil refinery fields in Korea.J. Microbiol. Biotechnol. 15: 337–345.

    CAS  Google Scholar 

  26. Da Silva, T. L., V. Calado, N. Silva, R. L. Mendes, S. S. Alves, J. M. T. Vasconcelos, and A. Reis (2006) Effects of hydrocarbon additions on gas-liquid mass transfer coefficients in biphasic bioreactors.Biotechnol. Bioprocess Eng. 11: 245–250.

    Article  Google Scholar 

  27. Kotterman, M. J., E. H. Vis, and J. A. Field (1998) Successive mincralization and detoxification of benzo[a] pyrene by the white rot fungusBjerkandera sp. strain BOS55 and indigenous microflora.Appl. Environ. Microbiol. 64: 2853–2858.

    CAS  Google Scholar 

  28. Hauser, B., G. Schrader, and M. Bahadir (1997) Comparison of acute toxicity and genotoxic concentrations of single compounds and waste elutriates using the Microtox/Mutatox test system.Ecotoxicol. Environ. Saf. 38: 227–231.

    Article  CAS  Google Scholar 

  29. Ross, B., Z. Marie, and E. Senior (1995) Bioremediation of an oil contaminated soil by fungal intervention.Proceeding of 3rd International In Situ and on Site Bioreclam Symposium. April 24–27. San Diego, CA, USA.

  30. Deacon, J. W. (1997)Modern Mycology. 3rd. ed., Blackwell Science, Oxford, USA.

    Google Scholar 

  31. Langeron, M. and R. Vanbreuseghem (1995)Outline of Mycology, 2nd ed., Sir Isaac Pitman & Sons, London, England.

    Google Scholar 

  32. Larone, D. H. (1993)Medically Important Fungi a Guide to Identification. 2nd. ed., American Society for Microbiology, Washington DC, USA.

    Google Scholar 

  33. Onions, A. H. S., D. Allsopp, and H. O. W. Eggins (1981)Smith's Introduction to Industrial Mycology. John Willey & Sons, Inc., New York, NY, USA.

    Google Scholar 

  34. Von Arx, J. A. (1974)The Genera of Fungi Sporulating in Pure Culture, J. Cramer., Vaduz. Germany.

    Google Scholar 

  35. OECD (1998)Daphnia magna reproduction test No. 211. In:OECD Guidelines for Testing of Chemicals. Organization for Economic Co-operation and Development, Paris, France.

    Google Scholar 

  36. Petukhov, V. N., V. M. Fomchenkov, V. A. Chugunov, and V. P. Kholodenko (2000) Plant biotests for soil and water contaminated with oil and oil products.Appl. Biochem. Microbiol. 36: 564–567.

    Article  Google Scholar 

  37. Ronnpagel, K., W. Lis, and W. Ahlf (1995) Microbial bioassay to asses the toxicity of solid-associated contaminants.Ecotoxicol. Environ. Saf. 31: 99–103.

    Article  CAS  Google Scholar 

  38. Boonchan, S., M. L. Britz, and G. A. Stanley (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures.Appl. Environ. Microbiol. 66: 1007–1019.

    Article  CAS  Google Scholar 

  39. Cutright, T. and S. G. Lee (1994) Remediation of PAH-contaminated soil using.Achromobacter sp.Energy Sources 16: 279–287.

    CAS  Google Scholar 

  40. Cutright, T. J. (1995) Polycyclic aromatic hydrocarbon biodegradation and kinetics usingCunninghamella echinulata var.elegans.Int. Biodeter. Biodeg. 34: 397–408.

    Article  Google Scholar 

  41. Brodkorb, T. S. and R. L. Legge (1992) Enhanced biodegradation of phenanthrene in oil-contaninated soils supplemented withPhanerochaete chrysosporium.Appl. Environ. Microbiol. 58: 3117–3121.

    CAS  Google Scholar 

  42. Ohmiya, K., K. Sakka, and T. Kimura (2005) Anaerobic bacterial degradation for the effective utilization of biomass.Biotechnol. Bioprocess Eng. 10: 482–493.

    Article  CAS  Google Scholar 

  43. Meulenberg, R., H. H. M. Rijnaarts, H. J. Doddema, and J. A. Field (1997) Partially oxidized polycyclic aromatic hydrocarbons show an increased bioavailability and biodegradability.FEMS Microbiol. Lett. 152: 45–49.

    Article  CAS  Google Scholar 

  44. Gourlay, C., M. H. Tusseau-Vuillemin, J. Garric, and J. M. Mouchel (2003) Effect of dissolved organic matter of various origins and biodegradabilities on the bioaccumulation of polycyclic aromatic hydrocarbons inDaphnia magna.Environ. Toxicol. Chem. 22: 1288–1294.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choul-Gyun Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JD., Lee, CG. Microbial degradation of polycyclic aromatic hydrocarbons in soil by bacterium-fungus co-cultures. Biotechnol. Bioprocess Eng. 12, 410–416 (2007). https://doi.org/10.1007/BF02931064

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931064

Keywords