Skip to main content
Log in

DNA sequence homology analysis ofars genes in arsenic-resistant bacteria

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Homology ofars (arsenic-resistance system) genes was examined among the indigenous bacteria isolated from the soils and sediments of two abandened Au mines, which are highly contaminated with arsenic. The DNA and amino acid sequence homology of thears determinants were investigated using anars genotype. The isolated showed As(III)-oxidation ability containedarsAB genes encoding the efflux pump as well asarsR andarsD regulator genes. ThearsR andarsD leader gene are required for an arsenic resistance system when the high-homology genes (arsR; pl258 52.09% andarsD;Shewanell sp. 42.33%) are controlled by thears inducer-independent regulatory amino acid sequence. These leader gene were observed under weak acidic conditions in the Myoung-bong (pH; 5.0 to 6.0) and Duck-um (pH; 4.0 to 7.0) mines In addition, the strains with the ability of As (V)-reduction involved thearsC gene homologues, as in the strain CW-16 (Pseudomonas putida). The arsenic-resistance genes in the isolated indigenous bacteria showed varying degrees of amino acid similarity to the homologous genes found in the database (GenBank) such asP. putida KT2440: 39–53% forarsR, 22–42% forarsD, 16–84% forarsA, 26–45% forarsB, 17–44% forarsAB, 37–41% forarsC, and 14–47% forarsH. These findings suggested that the function of the variousars gene in indigenous bacteria existing in weakly oxidative conditions may be the key factor for redox mechanisms and biogeochemical systems in arsenic contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ehrlich, H. L. (2002) Bacterial oxidation of As(III) compounds, pp. 313–327. In: W. T. Frankenberger, Jr. (ed.),Environmental Chemistry of Arsenic, Marcel Dekker, New York, NY, USA.

    Google Scholar 

  2. Chang, J. S., I. H. Yoon, and K. W. Kim (2007) Isolation andars detoxification of arsenite-oxidizing bacteria in abandoned arsenic-contaminated mines.J. Microbiol. Biotechnol. 17: 812–821.

    CAS  Google Scholar 

  3. Chang, J. S. (2007)Identification and Characteristics of Indigenous Bacteria in Arsenic-contaminated Soil Using ars Gene and 16S rDNA. MSc. Thesis, Gwangju Institute of Science and Technology (GIST), Gwangiu, Korea.

    Google Scholar 

  4. Silver, S., and L. T. Phung (1996) Bacterial heavy metal resistance: new surprises.Annu. Rev. Microbiol. 50: 753–789.

    Article  CAS  Google Scholar 

  5. Cai, J., K. Salmon, and M. S. DuBow (1998) A chromosomalars operon homologue ofPseudomonas aeruginosa confers increased resistance to arsenic and antimony inEscherichia coli.Microbiology 144: 2705–2713.

    CAS  Google Scholar 

  6. Bruhn, D. F., J. Li, S. Silver, F. Roberta, and B. P. Rosen (1996) The arsenical resistance operon of IncN plasmid R46.FEMS Microbiol. Lett. 139: 149–153.

    Article  CAS  Google Scholar 

  7. Rosenstein, R., A. Peschel, B. Wieland, and F. Gotz (1992) Expression and regulation of the antimonite, arsenite, and arsenate resistance operon ofStaphylococcus xylosus plasmid pSX267.J. Bacteriol. 174: 3676–3683.

    CAS  Google Scholar 

  8. Suzuki, K., N. Wakao, T. Kimura, K. Sakka, and K. Ohmiya (1998) Expression and regulation of the arsenic resistance operon ofAcidiphilium multivorum AIU301 plasmid pKW301 inEscherichia coli.Appl. Environ. Microbiol. 64: 411–418.

    CAS  Google Scholar 

  9. Chen, C. M., T. K. Misra, S. Silver, and B. P. Rosen (1986) Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon.J. Biol. Chem. 261: 15030–15038.

    CAS  Google Scholar 

  10. Ji, G., E. A. E. Garber, L. G. Armes, C. M. Chen, J. A. Fuchs, and S. Silver (1994) Arsenate reductase ofStaphylococcus aureus plasmid pI258.Biochemistry 33: 7294–7299.

    Article  CAS  Google Scholar 

  11. Neyt, C., M. Iriarte, V. H. Thi, and G. R. Cornelis (1997) Virulence and arsenic resistance in Yersiniae.J. Bacteriol. 179: 612–619.

    CAS  Google Scholar 

  12. Silver, S., and D. Keach (1982) Energy-dependent arsenate efflux: the mechanism of plasmid-mediated resistanceProc. Natl. Acad. Sci. USA 79: 6114–6118.

    Article  CAS  Google Scholar 

  13. Saltikov, C. W., and B. H. Olson (2002) Homology ofEscherichia coli R773arsAarsB, andarsC genes in arsenic-resistant bacteria isolated from raw sewage and arsenic-enrich creek waters.Appl. Environ. Microbiol. 68: 280–288.

    Article  CAS  Google Scholar 

  14. Canovas, D., I. Cases, and V. de Lorenzo (2003) Heavy metal tolerance and metal homeostasis inPseudomonas putida as revealed by complete genome analysis.Environ. Microbiol. 5: 1242–1256.

    Article  CAS  Google Scholar 

  15. Lopez-Maury, L., F. J. Florencio, and J. C. Reyes (2003) Arsenic sensing and resistance system in theCyanobacterium synechocystic sp. strain PCC 6803.J. Bacteriol. 185: 5363–5371.

    Article  CAS  Google Scholar 

  16. Kim, J. D., and C. G. Lee (2006) Characterization of two algal lytic bacteria associated with management of the cyanobacteriumAnabaena flos-aquae.Biotechnol. Bioprocess Eng 11: 382–390.

    CAS  Google Scholar 

  17. Ahn, J. M., B. C. Kim, and M. B. Gu (2006) Characterization ofgltA::luxCDABE fusion inEscherichia coli as a toxicity biosensor.Biotechnol. Bioprocess Eng. 11: 516–521.

    Article  CAS  Google Scholar 

  18. Kim, Y. B., J. H. Park, W. J. Chang, Y. M. Koo, E. K. Kim, and J. H. Kim (2006) Statistical optimization of the lysis agents for gram-negative bacteria cells in a microfluidic device.Biotechnol. Bioprocess Eng. 11: 288–292.

    Article  CAS  Google Scholar 

  19. Diorio, C., J. Cai, J. Marmor, R. Shinder, and M. S. DuBow (1995) AnEscherichia coli chromosomalars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria.J. Bacteriol. 177: 2050–2056.

    CAS  Google Scholar 

  20. Chen, C. M., H. L. Mobley, and B. P. Rosen (1985) Separate resistances to arsenate and arsenite (antimonate) encoded by the arsenical resistance operon of R factor R773.J. Bacteriol. 161: 758–763.

    CAS  Google Scholar 

  21. Stanier, R. Y., N. J. Palleroni, and M. Doudoroff (1966) The aerobic pseudomonas: a taxonomic study.J. Gen. Microbiol. 43: 159–271.

    CAS  Google Scholar 

  22. Sambrook, J., and D. W. Russel (2001)Molecular Cloning: A Laboratory Manual. 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

    Google Scholar 

  23. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.Nucleic Acids Res. 25: 3389–3402.

    Article  CAS  Google Scholar 

  24. Nelson, K. E., C. Weinel, I. T. Paulsen, R. J. Dodson, H. Hilbert, V. A. P. Martins dos Santos,et al. (2002) Complete genome sequence and comparative analysis of the metabolically versatilePseudomonas putida KT2440.Environ. Microbiol. 4: 799–808.

    Article  CAS  Google Scholar 

  25. Macur, R. E., C. R. Jackson, L. M. Botero, T. R. McDermott, and W. P. Inskeep (2004) Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil.Environ. Sci. Technol. 38: 104–111.

    Article  CAS  Google Scholar 

  26. Santini, J. M., L. I. Sly, A. Wen, D. Comrie, P. De Wulf-Durand, and J. M. Macy (2002) New arsentteoxidizing bacteria isolated from Australia gold mining environments phylogenetic relationships.Geomicrobiol. J. 19: 67–76.

    Article  CAS  Google Scholar 

  27. Mullen, M. D., D. C. Wolf, F. G. Ferris, T. J. Beveridge, C. A. Flemming, and G. W. Bailey (1989) Bacterial sorption of heavy metals.Appl. Environ. Microbiol. 55: 3143–3149.

    CAS  Google Scholar 

  28. vanden Hoven, R. N., and J. M. Santini (2004) Arsenite oxidation by the heterotrophHydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor.Biochim. Biophys. Acta 1656: 148–155.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung-Woong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, JS., Lee, JH. & Kim, KW. DNA sequence homology analysis ofars genes in arsenic-resistant bacteria. Biotechnol. Bioprocess Eng. 12, 380–389 (2007). https://doi.org/10.1007/BF02931060

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931060

Keywords

Navigation