Skip to main content
Log in

Sequence similarities of protein kinase substrates and inhibitors with immunoglobulins and model immunoglobulin homologue: Cell adhesion molecule from the living fossil spongeGeodia cydonium. Mapping of coherent database similarities and implications for evolution of CDR1 and hypermutation

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Sequences of immunoglobulin (Ig) domains of adhesive molecule GSAMS from the living fossil spongeGeodia cydonium were compared with the important motif of peptide protein kinase substrates and inhibitors (PKSI), detail PKSI sequences, and a common template sequence, derived from structures determined previously. We found the site-restricted sequence similarities to these peptide sequences predominantly in the GSAM Ig1 domain of GSAMS in the domain region related to corresponding Ig similarities detected earlier. Additional sequence block-related analysis revealed the presence of CDR1-like segments within PKSI-related regions and resulted in the detection of increased numbers of hypermutation motifs just in the CDR1-like segment of GSAM Ig1 (GSAM(cdr1.1)). In the following database searches with PKSI-related regions and GSAM(cdr1.1) we looked for: (i) peptide similarities present in the context of Ig domains or related structures in a large range of species fromArchaea toVertebrata, and (ii) some special nucleotide similarities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

aa:

amino acid(s), amino acid residue(s)

AID:

activation-induced cytidine deaminase

ANCESTOR:

constructed ancestor-like template (see Table I)

“BF subset”:

subset of similar and equally located and long IgV segments forming sequence block and motif

CDR1, CDR2:

the first and the second hypervariable region of Ig variable domains, respectively

FMC, FMV:

final motifs derived with the aid of PKSI sequence blocks and block consensus sequences of: (i) all corresponding segments of constant Ig domains — FMC, (ii) equally located variable domain segments of the highest homology — FMV (Kubrychtet al. 2002)

GP:

terminal positions of the GSAMS segments similar to compared protein (marked by aa) or nucleotide (marked by N) sequences

GSAM:

fourGeodia cydonium adhesion molecules with or without receptor tyrosine kinase activity, molecules belonging to the immunoglobulin superfamily

GSAM(1), GSAM(2):

former GSAM segment derived in Table II

GSAM Ig1, GSAM Ig2:

two GSAM domains of high homology with immunoglobulins

GSAMS:

short form of adhesion molecule GSAM fromGeodia cydonium. For relationships between abbreviations and location of several GSAMS segments derived heresee Table VI

HLE :

horizontal length equivalent (see Chapter 2.2.6)

Ig:

immunoglobulin

IgV:

variable domain(s) of immunoglobulin(s)

IgVHS :

domain of high similarity with variable domains of immunoglobulins in agreement with the special limits for NCBI conserved domain search

IL:

interleukin

IP:

terminal positions of immunoglobulin segments of similar description to GP intervals

KBI:

“knowledge-based identities” — represent site-restricted sequence identities or alternative identities following from single triplet mutation analysis of sequence block(s) described here or in Kubrychtet al. (2002)

NCAM2:

neural cell adhesion molecule 2

OI:

oligonucleotide identity (-ies) between GSAM Ig1 segment (segments) and various mRNAs and genes

OX2:

CD200, membrane protein expressed by broad repertoire of cell types

PKCgs:

protein kinase C substrate derived from glycogen synthase

PK1 :

inhibitor of cAMP-dependent protein kinase

PKSI:

protein kinase peptide substrate(s) and or inhibitor(s)

PM:

primary derived motif

RMT:

regular template, related to the revised version of PM defined in Kubrychtet al. (2002). RMT reflects the sequence similarities in mixture block of sequences of the highest homology with PM

SNEM:

search for short/near exact matches, special BLAST search comparing short segments with database

TCR:

T-cell receptor(s)

ZIG-1:

“zwei” (two)-immunoglobulin-domain protein 1 — member of protein family possibly required for maintenance of ventral neural cord organization inCaenorhabditis elegans (Aurelioet al. 2002)

References

  • Adams M.D., Celniker S.E., Holt R.A., Evans C.A., Gocayne J.D., Amanatides P.G., Scherer S.E., Li P.W., Hoskins R.A., Galle R.F.: The genome sequencing ofDrosophila melangoster.Science287, 2185–2195 (2000).

    Article  PubMed  Google Scholar 

  • Alexander D.L., Ganem L.G., Fernandez-Salguero P., Gonzalez F., Jefcoate C.R.: Aryl-hydrocarbon receptor is an inhibitory regulator of lipid synthesis and of a commitment to adipogenesis.J.Cell.Sci.111, 3311–3322 (1998).

    PubMed  CAS  Google Scholar 

  • Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J.: Basic local slignment search tool.J.Mol.Biol.215, 403–410 (1990).

    PubMed  CAS  Google Scholar 

  • Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.Nucl.Acids Res.25, 3389–3402 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Altschul S.F., Bundschuh R., Olsen R., Hwa T.: The estimation of statistical parameters for local alignment score distributions.Nucl.Acids Res.29, 351–361 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Ambrosone C.B., Freundenheim J.L., Thompson P.A., Bowman E., Vena J.E., Marshal J.R., Graham S., Laughlin R., Nemoto T., Shields P.G.: Manganese superoxide dismutase (MnSOD) genetic polymorphism, dietary antioxidans, and risk of breast cancer.Cancer Res.59, 602–606 (1999).

    PubMed  CAS  Google Scholar 

  • Aurelio O., Hall D.H., Hobert O.: Immunoglobulin-domain proteins required for maintenance of ventral nerve cord organization.Science295, 686–690 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Bernstein R.M., Schluter S.F., Bernstein H., Marchalonis J.J.: Primordial emergence of the recombination activating gene I (RAG1): sequence of the complete shark gene indicates homology to microbial integrases.Proc.Nat.Acad.Sci.USA93, 9454–9459 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Blumbach B., Diehl-Seifert B., Seack J., Steffen R., Muller I.M., Muller W.E.G.: Cloning and expression of new receptors belonging to the immunoglobulin superfamily from the marine spongeGeodia cydonium.Immunogenetics49, 751–763 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Cannon J.P., Haire R.N., Litman G.W.: Identification of diversified genes that contain immunoglobulin-like variable regions in a protochordate.Nature Immunol.3, 1200–1207 (2002).

    Article  CAS  Google Scholar 

  • Cary S.P., Lee, J., Wagenknecht R., Silverman G.J.: Characterization of superantigen-induced clonal deletion with novel clan III-restricted avian monoclonal antibody: exploiting evolutionary distance to create antibodies specific for a conserved VH region surface.J.Immunol.164, 4730–4741 (2000).

    PubMed  CAS  Google Scholar 

  • Colombrita C., Calabrese V., Stella A.M.G., Mattei F., Alkon D.L., Scapagnini G.: Regional rat brain distribution of heme oxygenase-1 and manganese superoxide dismutase mRNA: relevance of redox homeostasis in the ageing process.Exp.Biol.Med. (Maywood)227, 517–524 (2003).

    Google Scholar 

  • Cooper G.M.: The cancer cell, pp. 3–16 in J.E. Burns (Ed.):Oncogenes, 2nd ed. Jones and Bartlett Publishers, Boston-London 1995.

    Google Scholar 

  • Diaz M., Flajnik M.F.: Evolution of somatic hypermutation and gene conversion in adaptive immunity.Immunol.Rev.162, 13–24 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Diaz M., Velez J., Singh M., Cerny J., Flajnik M.F.: Mutational pattern of the nurse shark antigen receptor gene (NAR) is similar to that of mammalian Ig genes and to spontaneous mutations in evolution: the translesion synthesis model of somatic hypermutation.Internat.Immunol.11, 825–833 (1999).

    Article  CAS  Google Scholar 

  • Dorner T., Foster S.J., Brzezinschek H.-P., Lipsky P.E.: Analysis of the targeting of the hypermutation machinery and the impact of subsequent selection on the distribution of nucleotide changes in human VHDJH rearrangements.Immunol.Rev.162, 161–171 (1998a).

    Article  PubMed  CAS  Google Scholar 

  • Dorner T., Foster S.J., Farner N.L., Lipsky P.E.: Somatic hypermutation of human immunoglobulin heavy chain genes: targeting of RGYW motifs on both DNA strands.Eur.J.Immunol.28, 3384–3396 (1998b).

    Article  PubMed  CAS  Google Scholar 

  • Faili A., Aoufouchi S., Flatter E., Guéranger O., Reynaud C.-A., Weill J.-C.: Induction of somatic hypermutation in immunoglobulin genes is dependent on DNA polymerase ι.Nature419, 944–947 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Salguero P.M., Ward J.M., Sundberg J.P., Gonzalez F.J.: Lesions of aryl hydrocarbon receptor-deficient mice.Vet.Pathol.34, 605–614 (1997).

    PubMed  CAS  Google Scholar 

  • Freedman A.N.: Somatic alterations and metabolic polymorphisms.IARC Sci.Publ.148, 37–50 (1999).

    PubMed  CAS  Google Scholar 

  • Garte S., Sogawa K.: Ah receptor gene polymorphism and human cancer susceptibility.IARC Sci.Publ.148, 149–157 (1999).

    PubMed  CAS  Google Scholar 

  • Gordon M.S., Kanegai C.M., Doerr J.R., Wall R.: Somatic hypermuation of the B cell receptor genes B29 (Igβ, CD79b) and mb1(Igα, CD79a).Proc.Nat.Acad.Sci.USA100, 4126–4131 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Guillet C., Auguste P., Mayo W., Kreher P., Gascan H.: Ciliary neurotrophic factor is a regulator of muscular strength in aging.J.Neurosci.19, 1257–1262 (1999).

    PubMed  CAS  Google Scholar 

  • Holliday R.: The evolved anatomical and physiological design of mammals, pp. 12–22 and p. 41 in P.W. Barlow, D. Bray, P.B. Green, D.L. Kirk (Eds):Understanding Ageing. Cambridge University Press, New York 1995a.

    Google Scholar 

  • Holliday R.: Theories of ageing, pp. 41–66 in P.W. Barlow, D. Bray, P.B. Green, D.L. Kirk (Eds.):Understanding Ageing. Cambridge University Press, New York 1995b.

    Google Scholar 

  • Kabat E.A., Wu T.T., Perry H.M., Gottesman K.S., Foeller C.: Constant region sequences, pp. 647–723 in E. Kabat (Ed.):Sequences of Immunological Interest, Vol. 1, 5th ed. Public Health Service of NIH, Bethesda 1991a.

    Google Scholar 

  • Kabat E.A., Wu T.T., Perry H.M., Gottesman K.S., Foeller C.: Constant region sequences, pp. 2161–2180 in E. Kabat (Ed.):Sequences of Immunological Interest, Vol. 1, 5th ed. Public Health Service of NIH, Bethesda 1991b.

    Google Scholar 

  • Kawajiri K.: CYP1A1.IARC Sci.Public.148, 159–172 (1999).

    CAS  Google Scholar 

  • Kiyohara C.: Genetic polymorphism of enzymes involved in xenobietic metabolism and the risk of colorectal cancer.J.Epidemiol.10, 349–360 (2000).

    PubMed  CAS  Google Scholar 

  • Kubrycht J., Borecky J.: Matrix formalization for a simple approximative sequence comparison. (In Czech)Immunol.Zprav.27 (3), 21–27 (1998).

    Google Scholar 

  • Kubrycht J., Sigler K.: Animal membrane receptors and adhesive molecules.Crit.Rev.Biotechnol.17, 123–147 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Kubrycht J., Borecky J., Sigler K.: Sequence similarities of protein kinase peptide substrates. Comparison of their primary structures with immunoglobulin repeats.Folia Microbiol.47, 319–358 (2002).

    Article  CAS  Google Scholar 

  • Lee S.S., Tranchina D., Ohta Y., Flainik M.F., Hsu E.: Hypermutation in shark immunoglobulin light chain genes results contiguous substitutions.Immunity16, 571–582 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Lepš J.: Binomial distribution, pp. 145–148 in P. Pešek (Ed.):Biostatistics. Universitas Bohemiae Meridionalis, České Budějovice (Czechia) 1996.

    Google Scholar 

  • Lindahl E., Elofsson A.: Identification of related proteins on family, superfamily and fold level.J.Mol.Biol.295, 613–625 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Malaguarnera M., Ferlito L., Gulizia G., Di Fazio I., Pistone G.: Use of interleukin-2 in advanced renal carcinoma: meta-analysis and review of the literature.Eur.J.Clin.Pharmacol.57, 267–273 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Marchalonis J.J., Schluter S.F.: A stochastic model for the rapid emergence of specific vertebrate immunity incorporating horizontal transfer of systems enabling duplication and combinational diversification.J.Theor.Biol.193, 429–444 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Marchalonis J.J., Kaveri S., Lacroix-Desmazes S., Kazatchine M.D.: Natural recognition repertoire and the evolutionary emergence of the combinatorial immune system.FASEB J.16, 842–848 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Melov S.: Therapeutics against mitochondrial oxidative stress in animal models of ageing.Ann.N.Y.Acad.Sci.959, 330–340 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Morelli C., Karayianni E., Magnanini C., Mungall A.J., Thorland E., Negrini M., Smith D.I., Barbanti-Brodano G.: Cloning and characterization of the common fragile site FRAF6F, harboring a replicative senescence gene and frequently deleted in human tumors.Oncogene21, 7266–7276 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Muller W.E.G., Kruse M., Blumbach B., Skorokhod A., Muller I.M.: Gene structure and function of tyrosine kinases in the marine spongeGeodia cydonium: autapomorphic characters inMetazoa.Gene238, 179–193 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Muller W.E.G., Schroder H.C., Skorokhod A., Bunz C., Muller I.M., Grebenjuk V.A.: Contribution of sponge genes to unravel the genome of the hypothetical ancestor ofMetazoa (Urmetazoa).Gene276, 161–173 (2001a).

    Article  PubMed  CAS  Google Scholar 

  • Muller C.I., Blumbach B., Krasko A., Schroder H.C.: Receptor protein-tyrosine phosphatases: origin of domains (catalytic domain, Ig-related domain, fibronectin type III module) based on the sequence of the spongeGeodia cydonium.Gene262, 221–230 (2001b).

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu M., Kinoshita K., Fagarasan S., Yamada S., Schinkai Y., Honjo T.: Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme.Cell102, 553–563 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Ohlin M., Borrebaeck C.A.K.: Insertions and deletions in hypervariable loops of antibody heavy chains contribute to molecular diversity.Mol.Immunol.35, 233–238 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Okazaki I.-M., Hiai H., Kakazu N., Yamada S., Muramatsu M., Kinoshita K., Honjo T.: Constitutive expression of AID leads to tumorigenesis.J.Exp.Med.197, 1173–1181 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Renyi A.: Axiomatic postulation of effect field, 19–21 in J. Hájek (Ed.):Theory of Probability. Academia, Prague 1972.

    Google Scholar 

  • Reynaud C.A., Aoufouchi S., Faili A, Weill J.C.: What role for AID: mutator, or assembler of the immunoglobulin mutasome?Nature Immunol.4, 631–638 (2003).

    Article  CAS  Google Scholar 

  • Rothenfluh H.S., Blanden R.V., Steele E.J.: Evolution of V genes: DNA sequence structure of functional germ line genes and pseudogenes.Immunogenetics42, 159–171 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Schable K.F., Zachau H.-G.: The variable genes of the human immunoglobulin κ locus.Biol.Chem.Hoppe-Seyler374, 1001–1022 (1993).

    PubMed  CAS  Google Scholar 

  • Shimizu Y., Nakatsuru Y., Ichinose M., Takahashi Y., Kume H., Mimura J., Fuji-Kuriyama Y., Ishikawa T.: Benzo[a]pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor.Proc.Nat.Acad.Sci.USA97, 779–782 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Smith L.C., Shih C.-S., Dachenhausen S.G.: Celomocytes express SpBf, a homologue of factor B, the second component in the sea urchin complement system.J.Immunol.161, 6784–6793 (1998).

    PubMed  CAS  Google Scholar 

  • Soew A., Zhao B., Lee E.J., Poh W.T., Teh M., Eng P., Wang Y.T., Tan W.C., Lee H.P.: Cytochrome P450IA2 (CYP1A2) activity and lung cancer risk: a preliminary study among Chinese women in Singapore.Carcinogenesis22, 673–677 (2001).

    Article  Google Scholar 

  • Su L.K., Burrell M., Hill D.E., Gyuris J., Brent R., Wiltshire R., Trent J., Vogelstein B., Kinzler K.W.: APC binds to the novel protein EBI.Cancer Res.55, 2972–2977 (1995).

    PubMed  CAS  Google Scholar 

  • Suzuki H., Kundig T.M., Furlonger C., Wakeham A., Timms E., Matsuyama T., Schmits R., Simard, J.J.L., Ohashi P.S., Griesser H., Taniguchi T., Paige C.J., Mak T.W.: Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor β.Science268, 1472–1476 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Tan Z., Chang X., Puga A., Xia Y.: Activation of mitogen-activated protein kinases (MAPKs) by aromatic hydrocarbons: role in the regulation of aryl hydrocarbon receptor (AHR) function.Biochem.Pharmacol.64, 771–780 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Vineis P., Veglia F., Benhamou S., Butkiewicz D., Cascobori I., Clapper M.L., Dolzan V., Haugen A., Hirvonen A., Ingelman-Sundberg M.: CYPIAI T3801C polymorphism and lung cancer: a pooled analysis of 2451 case and 3358 controls.Inernat.J.Cancer104, 650–657 (2003).

    Article  CAS  Google Scholar 

  • Walker E.H.: Cancer as a mechanism of hypermutation.Acta Biotheor.40, 31–40 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Wallace D.C.: A mitochondrial paradigm for degenerative diseases and ageing.Novartis Found.Symp.235, 247–266 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Wang E.: Regulation of apoptosis resistance and ontogeny of age-dependent diseases.Exp.Gerontol.32, 471–484 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Weinstein E.J., Leder P.: The extracellular region of heregulin is sufficient to promote mammary gland proliferation and tumorigenesis but not apoptosis.Cancer Res.60, 3856–3861 (2000).

    PubMed  CAS  Google Scholar 

  • Wilson P., Liu Y.-J., Banchereau J., Capra J.D., Pascual V.: Amino acid insertions and deletions contribute to diversify the human Ig repertoire.Immunol.Rev.162, 143–151 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa K., Okazaki I., Eto T., Kinoshita K., Muramatsu M., Nagaoka H., Honjo T.: AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts.Science296, 2033–2036 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Zan H., Komori A., Li Z., Cerutti A., Schaffer A., Flajnik M.F., Diaz M., Casali P.: The translesion DNA polymerase ζ plays a major role in Ig and bcl-6 somatic hypermutation.Immunity14, 643–653 (2000).

    Article  Google Scholar 

  • Zhang I.-T., Lee C.H., Duthie M., Ling V.: Topological determinants of internal transmembrane segments in P-glycoprotein sequences.J.Biol.Chem.270, 1742–1746 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kubrycht.

Additional information

This study was supported by grant ofInternal Grant Agency of the Ministry of Public Health of the Czech Republic no. 6747-3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubrycht, J., Borecký, J., Souček, P. et al. Sequence similarities of protein kinase substrates and inhibitors with immunoglobulins and model immunoglobulin homologue: Cell adhesion molecule from the living fossil spongeGeodia cydonium. Mapping of coherent database similarities and implications for evolution of CDR1 and hypermutation. Folia Microbiol 49, 219–246 (2004). https://doi.org/10.1007/BF02931038

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931038

Keywords

Navigation