Skip to main content
Log in

Operators commuting with a discrete subgroup of translations

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study the structure of operators from the Schwartz space S(ℝn) into the tempered distributions S′(ℝn) that commute with a discrete subgroup of translations. The formalism leads to simple derivations of recent results about the frame operator of shift-invariant systems, Gabor, and wavelet frames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbey, K., Hackenbroch, W., and Willie, H. Partially translation invariant linear systems,Integral Equations Operator Theory 3(3), 311–322, (1980).

    Article  MATH  MathSciNet  Google Scholar 

  2. de Boor, C., Devore, R.A., and Ron, A. The structure of finitely generated shift-invariant spaces inL 2(R d),J. Funct. Anal. 119(1), 37–78, (1994).

    Article  MATH  MathSciNet  Google Scholar 

  3. Bownik, M. A characterization of affine dual frames inL 2(R n),Appl. Comput. Harmon. Anal. 8 (2), 203–221, (2000).

    Article  MATH  MathSciNet  Google Scholar 

  4. Bownik, M. The structure of shift-invariant subspaces ofL 2(R n),J. Funct. Anal. 177(2), 282–309, (2000).

    Article  MATH  MathSciNet  Google Scholar 

  5. Casazza, P.G., Christensen, O., and Janssen, A.J.E.M. Weyl-Heisenberg frames, translation invariant systems and the Walnut representation,J. Funct. Anal. 180(1), 85–147, (2001).

    Article  MATH  MathSciNet  Google Scholar 

  6. Christensen, O.An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, (2003).

    MATH  Google Scholar 

  7. Chui, C.K.An Introduction to Wavelets, Academic Press, Boston, (1992).

    MATH  Google Scholar 

  8. Chui, C.K., Shi, X., and Stöckler, J. Affine frames, quasi-affine frames, and their duals,Adv. Comput. Math. 8(1–2), 1–17, (1998).

    Article  MATH  MathSciNet  Google Scholar 

  9. Daubechies, I.Ten Lectures on Wavelets, SIAM, Philadelphia, (1992).

    MATH  Google Scholar 

  10. Daubechies, I., Landau, H.J., and Landau, Z. Gabor time-frequency lattices and the Wexler-Raz identity,J. Fourier Anal. Appl. 1(4), 437–478, (1995).

    Article  MATH  MathSciNet  Google Scholar 

  11. Feichtinger, H.G. and Kozek, W. Quantization of TF lattice-invariant operators on elementary LCA groups, inGabor Analysis and Algorithms, Feichtinger, H.G. and Strohmer, T., Eds, Birkhäuser, Boston, 233–266, (1998).

    Google Scholar 

  12. Feichtinger, H.G. and Strohmer, T. Eds.,Gabor Analysis and Algorithms, Birkhäuser, Boston, (1998).

    MATH  Google Scholar 

  13. Feichtinger, H.G. and Strohmer, T., Eds.,Advances in Gabor Analysis, Birkhäuser, Boston, (2003).

    MATH  Google Scholar 

  14. Feichtinger, H.G. and Zimmermann, G.A. Banach space of test functions for Gabor analysis, inGabor Analysis and Algorithms, Feichtinger, H.G. and Strohmer, T., Eds., Birkhäuser, Boston, 123–170, (1998).

    Google Scholar 

  15. Gelfand, I.M. and Ya, N.Generalized Functions 4, Academic Press, New York (1964).

    Google Scholar 

  16. Gressman, P., Labate, D., Weiss, G., and Wilson, E. Affine, quasi-affine and co-affine frames, inBeyond Wavelets, Welland, G.W., Ed., Elsevier, 215–223, (2003).

  17. Gröchenig, K.Foundations of Time-Frequency Analysis, Birkhäuser, Boston, (2001).

    MATH  Google Scholar 

  18. Helson, H.Lectures on Invariant Subspaces, Academic Press, New York, (1964).

    MATH  Google Scholar 

  19. Hernádez, E., Labate, D., and Weiss, G. A unified characterization of reproducing systems generated by a finite family II,J. Geom. Anal. 12(4), 615–662, (2002).

    MathSciNet  Google Scholar 

  20. Hernández, E., Labate, D., Weiss, G., and Wilson, E. Oversampling, quasi-affine frames, and wave packets,Appl. Comput Harmon. Anal. 16(2), 111–147, (2004).

    Article  MATH  MathSciNet  Google Scholar 

  21. Hewitt, E., and Ross, K.A.Abstract Harmonic Analysis II, 2nd ed., Springer, Berlin, (1970).

    MATH  Google Scholar 

  22. Hörmander, L. Estimates for translation invariant operators inL p spaces,Acta Math. 104, 93–140, (1960).

    Article  MATH  MathSciNet  Google Scholar 

  23. Hörmander, L.The Analysis of Linear Partial Differential Operators I, 2nd ed., Springer, Berlin, Distribution theory and Fourier analysis, (1990).

    MATH  Google Scholar 

  24. Heil, C.E. and Walnut, D.F. Continuous and discrete wavelet transforms.SIAM Rev. 31(4), 628–666, (1989).

    Article  MATH  MathSciNet  Google Scholar 

  25. Hernández, E. and Wejss, G.A First Course on Wavelets, CRC Press, Roca Raton, (1996).

    MATH  Google Scholar 

  26. Janssen, A.J.E.M. Duality and biorthogonality for Weyl-Heisenberg frames.J. Fourier Anal. Appl. 1(4), 403–436, (1995).

    Article  MATH  MathSciNet  Google Scholar 

  27. Janssen, A.J.E.M. The duality condition for Weyl-Heisenberg frames, inGabor Analysis and Algorithms, Feichtinger, H.G. and Strohmer, T., Eds., Birkhäuser, Boston, 33–84, (1998).

    Google Scholar 

  28. Labate, D. A unified characterization of reproducing systems generated by a finite family,J. Geom. Anal. 12 (3), 469–491, (2002).

    MATH  MathSciNet  Google Scholar 

  29. Meyer, Y.Wavelets and Operators, Cambridge University Press, (1992).

  30. Ron, A. and Shen, Z. Frames and stable bases for shift-invariant subspaces ofL 2(R d),Canad. J. Math. 47(5), 1051–1094, (1995).

    MATH  MathSciNet  Google Scholar 

  31. Ron, A. and Shen, Z. Affine systems inL 2(R d) II, Dual systems,J. Fourier Anal. Appl. 3(5), 617–637, Dedicated to the memory of Richard J. Duffin, (1997).

    Article  MathSciNet  Google Scholar 

  32. Ron, A. and Shen, Z. Affine systems inL 2(R d): The analysis of the analysis operator.J. Funct. Anal. 148(2), 408–447, (1997).

    Article  MATH  MathSciNet  Google Scholar 

  33. Ron, A. and Shen, Z. Weyl-Heisenberg frames and Riesz bases inL 2(R d),Duke Math. J. 89(2), 237–282, (1997).

    Article  MATH  MathSciNet  Google Scholar 

  34. Walnut, D.F. Continuity properties of the Gabor frame operator,J. Math. Anal. Appl. 165(2), 479–504, (1992).

    Article  MATH  MathSciNet  Google Scholar 

  35. Wang, X. The study of wavelets from the properties of their Fourier transforms, PhD thesis, Washington University St. Louis, (1995).

    Google Scholar 

  36. Wexler, J. and Raz, S. Discrete Gabor expansions,Signal Process 21(3), 207–221, (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. G. Feichtinger.

Additional information

Communicated by Yoram Sagher

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feichtinger, H.G., Führ, H., Gröchenig, K. et al. Operators commuting with a discrete subgroup of translations. J Geom Anal 16, 53–67 (2006). https://doi.org/10.1007/BF02930987

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02930987

Math Subject Classifications

Key Words and Phrases

Navigation