Abstract
The aim of this article is to study Seifert bundle structures on simply connected 5-manifolds. We classify all such 5-manifolds which admit a positive Seifert bundle structure, and in a few cases all Seifert bundle structures are also classified. These results are then used to construct positive Ricci curvature Einstein metrics on these manifolds.
The proof has 4 main steps. First, the study of the Leray spectral sequence of the Seifert bundle, based on work of Orlik-Wagreich. Second, the study of log Del Pezzo surfaces. Third, the construction of Kähler-Einstein metrics on Del Pezzo orbifolds using the algebraic existence criterion of Demailly-Kollár. Fourth, the lifting of the Kähler-Einstein metric on the base of a Seifert bundle to an Einstein metric on the total space using the Kobayashi-Boyer-Galicki method.
Similar content being viewed by others
References
Boyer, C.P. and Galicki, K. On Sasakian-Einstein geometry,Internat. J. Math. 11(7), 873–909, (2000).
Boyer, C.P. and Galicki, K. New Einstein metrics in dimension five,J. Differential Geom. 57(3), 443–463, (2001).
Boyer, C.P. and Galicki, K. Einstein metrics on rational homology spheres, arXiv:math. DG/0311355. (2003).
Boyer, C.P. and Galicki, K. New Einstein metrics on 8#(S 2×S 3),Differential Geom. Appl. 19(2), 245–251, (2003).
Boyer, C.P. and Galicki, K. Sasakian geometry, hypersurface singularities and Einstein metrics,Rend. Circ. Mat. Palermo (2) Suppl. 75, 57–87, (2005).
Boyer, C.P., Galicki, K. and Kollár, J. Einstein metrics on spheres,Ann. of Math. 162, 1–24, (2005).
Boyer, C.P., Galicki, K. and Nakamaye, M. Sasakian-Einstein structures on 9#(S 2×S 3).Trans. Amer. Math. Soc. 354(8), 2983–2996 (electronic), (2002).
Boyer, C.P., Galicki, K. and Nakamaye, M. On positive Sasakian geometry,Geom. Dedicata 101(1), 93–102, (2003).
Boyer, C.P., Galicki, K. and Nakamaye, M. On the geometry of Sasakian-Einstein 5-manifolds,Math. Ann. 325(3), 485–524, (2003).
Barth, W.P., Hulek, K., Peters, C.A.M. and Van, A. Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics],4, Springer-Verlag, Berlin, (2004).
Brieskorn, E. Beispiele zur Differentialtopologie von Singularitäten,Invent. Math. 2, 1–14, (1966).
Campana, F. Une version géométrique généralisée du théorème du produit de Nadel,Bull. Soc. Math. France 119(4), 479–493 (1991).
Demazure, M. Anneaux gradués normaux, Introduction à la théorie des singularités, II,Travaux en Cours,37, Hermann, Paris, 35–68, (1988).
Demailly, J.-P. and Kollár, J. Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds,Ann. Sci. École Norm. Sup. (4) 34(4), 525–556, (2001).
Dolgachev, I.V. Automorphic forms, and quasihomogeneous singularities,Funkcional. Anal. i Priložen 9(2), 67–68, (1975).
Furushima, M. Singular del Pezzo surfaces and analytic compactifications of three-dimensional complex affine space C, 3,Nagoya Math. J. 104, 1–28, (1986).
Flenner, H. and Zaidenberg, M. Normal affine surfaces with ℂ*-actions,Osaka J. Math. 40(4), 981–1009 (2003).
Griffiths, P. and Harris, J.Principles of Algebraic Geometry, Wiley-Interscience, John Wiley & Sons, New York, (1978).
Henderson, A. The twenty seven lines upon the cubic surface,Cambridge Tracts in Math., Cambridge University Press, (1911).
Haefliger, A. Actions of ton on orbifolds,Ann. Global Anal. Geom. 9(1), 37–59, (1991).
Johnson, J.M. and Kollár, J. Kähler-Einstein metrics on log del Pezzo surfaces in weighted projective 3-spaces,Ann. Inst. Fourier (Grenoble) 51(1), 69–79, (2001).
Keel, S. and McKernan, J. Rational curves on quasi-projective surfaces,Mem. Amer. Math. Soc. 140 (669), viii-153, (1999).
Kobayashi, S. Topology of positively pinched Kaehler manifolds,Tôhoku Math. J. (2) 15, 121–139, (1963).
Kollár, J. and Mori, S. Birational geometry of algebraic varieties.Cambridge Tracts in Math. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C.H. Clemens and A. Corti. Translated from the 1998. Japanese original.
Kollár, J., Miyaoka, Y. and Mori, S. Rational connectedness and boundedness of Fano manifolds,J. Differential Geom. 36(3), 765–779, (1992).
Kollár, J., Ed. Flips and abundance for algebraic threefolds, Paris, Société Mathématique de France, 1992, Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991,Astérisque 211 (1992).
Kollár, J. Log surfaces of general type; some conjectures, Classification of algebraic varieties (L'Aquila, 1992),Contemp. Math. 162, Amer. Math. Soc., Providence, RI, 261–275, (1994).
Kollár, J. Einstein metrics on connected sums ofS 2×S 3, math.DG/0402141 (2004).
Kollár, J. SeifertG m-bundles, math AG/0404386 (2004).
Miyanishi, M. Open algebraic surfaces,CRM Monogr. Ser. 12, Amer. Math. Soc. Providence, RI, (2001).
Miyaoka, Y. and Mori, S. A numerical criterion for uniruledness,Ann. of Math. (2) 124(1), 65–69, (1986).
Moroianu, A. Parallel and Killing spinors on Spinc manifolds,Comm. Math. Phys. 187(2), 417–427, (1997).
Mukai, S. Finite groups of automorphisms ofK3, surfaces and the Mathieu group,Invent. Math. 94(1), 183–221, (1988).
Mumford, D. The topology of normal singularities of an algebraic surface and a criterion for simplicity,Publ. Math. Inst. Hautes. Etudes Sci. 9, 5–22, (1961).
Miyanishi, M. and Zhang, D.-Q. Gorenstein log del Pezzo surfaces of rank one,J. Algebra 118(1), 63–84, (1988).
Miyanishi, M. and Zhang, D.-Q. Gorenstein log del Pezzo surfaces, II,J. Algebra 156(1), 183–193, (1993).
Nadel, A.M. Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature,Ann. of Math. (2) 132(3), 549–596, (1990).
Nadel, A.M. The boundedness of degree of Fano varieties with Picard number one,J. Amer. Math. Soc. 4(4), 681–692, (1991).
Orlik, P. and Wagreich, P. Seifertn-manifolds,Invent. Math. 28, 137–159, (1975).
Pinkham, H. Normal surface singularities withC * action,Math. Ann. 227(2), 183–193, (1977).
Rukimbira, P. The dimension of leaf closures ofK-contact flows,Ann. Global Anal. Geom. 12(2), 103–108, (1994).
Rukimbira, P. Chern-Hamilton's conjecture andK-contactness,Houston J. Math. 21(4), 709–718, (1995).
Sakai, F. Anticanonical models of rational surfaces,Math. Ann. 269(3), 389–410, (1984).
Scott, P. The geometries of 3-manifolds,Bull. London Math. Soc. 15(5), 401–487, (1983).
Seifert, H. Topologie dreidimensionaler gefaserte Räume,Acta Math. 60, 148–238, (1932).
Shokurov, V.V. Complements on surfaces,J. Math. Sci. (New York) 102(2), 3876–3932, (2000).
Smale, S. On the structure of 5-manifolds,Ann. of Math (2) 75, 38–46, (1962).
Thurston, W.The Geometry and Topology of 3-Manifolds, Princeton University, Mimeographed Notes, (1978).
Yau, S.T. Calabi's conjecture and some new results in algebraic geometry,Proc. Nat. Acad. Sci. USA 74(5), 1798–1799, (1977).
Ye, Q. On Gorenstein log del Pezzo surfaces,Japan. J. Math. (N.S.) 28(1), 87–136, (2002).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Steven Krantz
Rights and permissions
About this article
Cite this article
Kollár, J. Einstein metrics on five-dimensional Seifert bundles. J Geom Anal 15, 445–476 (2005). https://doi.org/10.1007/BF02930981
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02930981