Skip to main content
Log in

Einstein metrics on five-dimensional Seifert bundles

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The aim of this article is to study Seifert bundle structures on simply connected 5-manifolds. We classify all such 5-manifolds which admit a positive Seifert bundle structure, and in a few cases all Seifert bundle structures are also classified. These results are then used to construct positive Ricci curvature Einstein metrics on these manifolds.

The proof has 4 main steps. First, the study of the Leray spectral sequence of the Seifert bundle, based on work of Orlik-Wagreich. Second, the study of log Del Pezzo surfaces. Third, the construction of Kähler-Einstein metrics on Del Pezzo orbifolds using the algebraic existence criterion of Demailly-Kollár. Fourth, the lifting of the Kähler-Einstein metric on the base of a Seifert bundle to an Einstein metric on the total space using the Kobayashi-Boyer-Galicki method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyer, C.P. and Galicki, K. On Sasakian-Einstein geometry,Internat. J. Math. 11(7), 873–909, (2000).

    Article  MATH  MathSciNet  Google Scholar 

  2. Boyer, C.P. and Galicki, K. New Einstein metrics in dimension five,J. Differential Geom. 57(3), 443–463, (2001).

    MATH  MathSciNet  Google Scholar 

  3. Boyer, C.P. and Galicki, K. Einstein metrics on rational homology spheres, arXiv:math. DG/0311355. (2003).

  4. Boyer, C.P. and Galicki, K. New Einstein metrics on 8#(S 2×S 3),Differential Geom. Appl. 19(2), 245–251, (2003).

    Article  MATH  MathSciNet  Google Scholar 

  5. Boyer, C.P. and Galicki, K. Sasakian geometry, hypersurface singularities and Einstein metrics,Rend. Circ. Mat. Palermo (2) Suppl. 75, 57–87, (2005).

    MathSciNet  Google Scholar 

  6. Boyer, C.P., Galicki, K. and Kollár, J. Einstein metrics on spheres,Ann. of Math. 162, 1–24, (2005).

    MathSciNet  Google Scholar 

  7. Boyer, C.P., Galicki, K. and Nakamaye, M. Sasakian-Einstein structures on 9#(S 2×S 3).Trans. Amer. Math. Soc. 354(8), 2983–2996 (electronic), (2002).

    Article  MATH  MathSciNet  Google Scholar 

  8. Boyer, C.P., Galicki, K. and Nakamaye, M. On positive Sasakian geometry,Geom. Dedicata 101(1), 93–102, (2003).

    Article  MATH  MathSciNet  Google Scholar 

  9. Boyer, C.P., Galicki, K. and Nakamaye, M. On the geometry of Sasakian-Einstein 5-manifolds,Math. Ann. 325(3), 485–524, (2003).

    Article  MATH  MathSciNet  Google Scholar 

  10. Barth, W.P., Hulek, K., Peters, C.A.M. and Van, A. Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics],4, Springer-Verlag, Berlin, (2004).

    Google Scholar 

  11. Brieskorn, E. Beispiele zur Differentialtopologie von Singularitäten,Invent. Math. 2, 1–14, (1966).

    Article  MATH  MathSciNet  Google Scholar 

  12. Campana, F. Une version géométrique généralisée du théorème du produit de Nadel,Bull. Soc. Math. France 119(4), 479–493 (1991).

    MATH  MathSciNet  Google Scholar 

  13. Demazure, M. Anneaux gradués normaux, Introduction à la théorie des singularités, II,Travaux en Cours,37, Hermann, Paris, 35–68, (1988).

    Google Scholar 

  14. Demailly, J.-P. and Kollár, J. Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds,Ann. Sci. École Norm. Sup. (4) 34(4), 525–556, (2001).

    MATH  Google Scholar 

  15. Dolgachev, I.V. Automorphic forms, and quasihomogeneous singularities,Funkcional. Anal. i Priložen 9(2), 67–68, (1975).

    Google Scholar 

  16. Furushima, M. Singular del Pezzo surfaces and analytic compactifications of three-dimensional complex affine space C, 3,Nagoya Math. J. 104, 1–28, (1986).

    MATH  MathSciNet  Google Scholar 

  17. Flenner, H. and Zaidenberg, M. Normal affine surfaces with ℂ*-actions,Osaka J. Math. 40(4), 981–1009 (2003).

    MATH  MathSciNet  Google Scholar 

  18. Griffiths, P. and Harris, J.Principles of Algebraic Geometry, Wiley-Interscience, John Wiley & Sons, New York, (1978).

    MATH  Google Scholar 

  19. Henderson, A. The twenty seven lines upon the cubic surface,Cambridge Tracts in Math., Cambridge University Press, (1911).

  20. Haefliger, A. Actions of ton on orbifolds,Ann. Global Anal. Geom. 9(1), 37–59, (1991).

    Article  MATH  MathSciNet  Google Scholar 

  21. Johnson, J.M. and Kollár, J. Kähler-Einstein metrics on log del Pezzo surfaces in weighted projective 3-spaces,Ann. Inst. Fourier (Grenoble) 51(1), 69–79, (2001).

    MATH  MathSciNet  Google Scholar 

  22. Keel, S. and McKernan, J. Rational curves on quasi-projective surfaces,Mem. Amer. Math. Soc. 140 (669), viii-153, (1999).

    MathSciNet  Google Scholar 

  23. Kobayashi, S. Topology of positively pinched Kaehler manifolds,Tôhoku Math. J. (2) 15, 121–139, (1963).

    Article  MATH  Google Scholar 

  24. Kollár, J. and Mori, S. Birational geometry of algebraic varieties.Cambridge Tracts in Math. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C.H. Clemens and A. Corti. Translated from the 1998. Japanese original.

    MATH  Google Scholar 

  25. Kollár, J., Miyaoka, Y. and Mori, S. Rational connectedness and boundedness of Fano manifolds,J. Differential Geom. 36(3), 765–779, (1992).

    MATH  MathSciNet  Google Scholar 

  26. Kollár, J., Ed. Flips and abundance for algebraic threefolds, Paris, Société Mathématique de France, 1992, Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991,Astérisque 211 (1992).

    MATH  Google Scholar 

  27. Kollár, J. Log surfaces of general type; some conjectures, Classification of algebraic varieties (L'Aquila, 1992),Contemp. Math. 162, Amer. Math. Soc., Providence, RI, 261–275, (1994).

    Google Scholar 

  28. Kollár, J. Einstein metrics on connected sums ofS 2×S 3, math.DG/0402141 (2004).

  29. Kollár, J. SeifertG m-bundles, math AG/0404386 (2004).

  30. Miyanishi, M. Open algebraic surfaces,CRM Monogr. Ser. 12, Amer. Math. Soc. Providence, RI, (2001).

    MATH  Google Scholar 

  31. Miyaoka, Y. and Mori, S. A numerical criterion for uniruledness,Ann. of Math. (2) 124(1), 65–69, (1986).

    Article  MathSciNet  Google Scholar 

  32. Moroianu, A. Parallel and Killing spinors on Spinc manifolds,Comm. Math. Phys. 187(2), 417–427, (1997).

    Article  MATH  MathSciNet  Google Scholar 

  33. Mukai, S. Finite groups of automorphisms ofK3, surfaces and the Mathieu group,Invent. Math. 94(1), 183–221, (1988).

    Article  MATH  MathSciNet  Google Scholar 

  34. Mumford, D. The topology of normal singularities of an algebraic surface and a criterion for simplicity,Publ. Math. Inst. Hautes. Etudes Sci. 9, 5–22, (1961).

    Article  MATH  MathSciNet  Google Scholar 

  35. Miyanishi, M. and Zhang, D.-Q. Gorenstein log del Pezzo surfaces of rank one,J. Algebra 118(1), 63–84, (1988).

    Article  MATH  MathSciNet  Google Scholar 

  36. Miyanishi, M. and Zhang, D.-Q. Gorenstein log del Pezzo surfaces, II,J. Algebra 156(1), 183–193, (1993).

    Article  MATH  MathSciNet  Google Scholar 

  37. Nadel, A.M. Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature,Ann. of Math. (2) 132(3), 549–596, (1990).

    Article  MathSciNet  Google Scholar 

  38. Nadel, A.M. The boundedness of degree of Fano varieties with Picard number one,J. Amer. Math. Soc. 4(4), 681–692, (1991).

    Article  MATH  MathSciNet  Google Scholar 

  39. Orlik, P. and Wagreich, P. Seifertn-manifolds,Invent. Math. 28, 137–159, (1975).

    Article  MATH  MathSciNet  Google Scholar 

  40. Pinkham, H. Normal surface singularities withC * action,Math. Ann. 227(2), 183–193, (1977).

    Article  MathSciNet  Google Scholar 

  41. Rukimbira, P. The dimension of leaf closures ofK-contact flows,Ann. Global Anal. Geom. 12(2), 103–108, (1994).

    Article  MATH  MathSciNet  Google Scholar 

  42. Rukimbira, P. Chern-Hamilton's conjecture andK-contactness,Houston J. Math. 21(4), 709–718, (1995).

    MATH  MathSciNet  Google Scholar 

  43. Sakai, F. Anticanonical models of rational surfaces,Math. Ann. 269(3), 389–410, (1984).

    Article  MATH  MathSciNet  Google Scholar 

  44. Scott, P. The geometries of 3-manifolds,Bull. London Math. Soc. 15(5), 401–487, (1983).

    Article  MATH  MathSciNet  Google Scholar 

  45. Seifert, H. Topologie dreidimensionaler gefaserte Räume,Acta Math. 60, 148–238, (1932).

    MathSciNet  Google Scholar 

  46. Shokurov, V.V. Complements on surfaces,J. Math. Sci. (New York) 102(2), 3876–3932, (2000).

    Article  MATH  MathSciNet  Google Scholar 

  47. Smale, S. On the structure of 5-manifolds,Ann. of Math (2) 75, 38–46, (1962).

    Article  MathSciNet  Google Scholar 

  48. Thurston, W.The Geometry and Topology of 3-Manifolds, Princeton University, Mimeographed Notes, (1978).

  49. Yau, S.T. Calabi's conjecture and some new results in algebraic geometry,Proc. Nat. Acad. Sci. USA 74(5), 1798–1799, (1977).

    Article  MATH  Google Scholar 

  50. Ye, Q. On Gorenstein log del Pezzo surfaces,Japan. J. Math. (N.S.) 28(1), 87–136, (2002).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Kollár.

Additional information

Communicated by Steven Krantz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kollár, J. Einstein metrics on five-dimensional Seifert bundles. J Geom Anal 15, 445–476 (2005). https://doi.org/10.1007/BF02930981

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02930981

Math Subject Classifications

Key Words and Phrases

Navigation