Skip to main content
Log in

Trehalose, glycogen and ethanol metabolism in thegcrl mutant ofSaccharomyces cerevisiae

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Since Gcr1p is pivotal in controlling the transcription of glycolytic enzymes and trehalose metabolism seems to be one of the control points of glycolysis, we examined trehalose and glycogen synthesis in response to 2 % glucose pulse during batch growth ingcr1 (glucose regulation-1) mutant lacking fully functional glycolytic pathway and in the wild-type strain. An increase in both trehalose and glycogen stores was observed 1 and 2 h after the pulse followed by a steady decrease in both the wild-type and thegcr1 mutant. The accumulation was faster while the following degradation was slower ingcr1 cells compared to wild-type ones. Although there was no distinct glucose consumption in the mutant cells it seemed that the glucose repression mechanism is similar ingcr1 mutant and in wild-type strain at least with respect to trehalose and glycogen metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Gle:

glucose

Glg:

glycogen

Tre:

trehalose

UAS:

upstream activator sequence

YP:

yeast extract-peptone

YPG:

yeast extract-peptone-glycerol

YPGal:

yeast extract-peptone-galactose

YPGL:

yeast extract-peptone-glycerol-lactate

References

  • Bell W., Weining S., Hohmann S., Wera S., Reinders A., De Virgillio C., Wiemken A., Thevelein J.M.: Compositional and functional analysis of theSaccharomyces cerevisiae trehalose synthase complex.J.Biol.Chem.273, 33311–33319 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Boles E., Zimmermann F.K.: Induction of pyruvate decarboxylase in glycolysis mutants ofS. cerevisiae correlates with the concentration of three-carbon glycolytic intermediates.Arch.Microbiol.160, 324–328 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Boles E.: Pyruvate kinase, pp. 171–186 in F.K Zimmermann, K.D. Entian (Eds):Yeast Sugar Metabolism: Biochemistry, Genetics, Biotechnology and Applications. Technomics, Lancaster (USA) 1997.

    Google Scholar 

  • Boles E., Schulte F., Miosga T., Freidel K., Schluter E., Zimmermann F.K., Hoolenberg C., Heinisch J.: Characterization of a glucose repressed pyruvate kinase (Pyk2) inSaccharomyces cerevisiae that is catalytically insensitive to fructose 1,6-bisphosphate.J.Bacteriol.179, 2987–2993 (1997).

    PubMed  CAS  Google Scholar 

  • Clifton D., Fraenkel D.G.: Thegcr (glycolysis regulation) mutation ofS. cerevisiae.J.Biol.Chem.256, 13074–13078 (1981).

    PubMed  CAS  Google Scholar 

  • Denis C.L., Ferguson J., Young E.: mRNA levels for the fermentative alcohol dehydrogenase ofSaccharomyces cerevisiae decrease upon growth on a nonfermentable carbon source.J.Biol.Chem.258, 1165–1171 (1983).

    PubMed  CAS  Google Scholar 

  • François J., Villanueva M.E., Hers H.G.: The control of glycogen metabolism in yeast — 1. Interconversionin vivo of glycogen synthase and glycogen phosphorylase induced by glucose, a nitrogen source or uncouplers.Eur.J.Biochem.174, 551–559 (1988).

    Article  PubMed  Google Scholar 

  • François J.M., Blazquez M.A., Arino J., Gancedo C.: Storage carbohydrates in the yeastSaccharomyces cerevisiae, pp. 287–311 in F.K. Zimmermann, K.D. Entian (Eds):Yeast Sugar Metabolism: Biochemistry, Genetics, Biotechnology and Applications. Technomics, Lancaster (USA) 1997.

    Google Scholar 

  • François J., Parrou J.L.: Reserve carbohydrates metabolism in the yeastSaccharomyces cerevistae.FEMS Microbiol.Rev.25, 125–145 (2001).

    Article  PubMed  Google Scholar 

  • Herrero P., Flores L., De la Cera T., Moreno F.: Functional characterization of transcriptional regulatory elements in the upstream region of the yeastGLK1 gene.Biochem.J.343, 319–325 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Hohmann S., Neves M.J., de Koning W., Alijo R., Ramos J., Thevelein J.M.: The growth and signaling defects of theggs1 (fdp1/byp1) deletion mutant on glucose are suppressed by a deletion of the gene encoding hexokinase PII.Curr.Genet.23, 281–289 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Hottiger T., Boller T., Wiemken A.: Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content inSaccharomyces cerevisiae cells subjected to temperature shifts.FEBS Lett.220, 113–115 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Johnston M.: Feasting, fasting and fermenting.Trends Genet.15, 29–33 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Lillie S.H., Pringle J.R.: Reserve carbohydrate metabolism inSaccharomyces cerevisiae: response to nutrient limitation.J.Bacteriol.143, 1384–1394 (1980).

    PubMed  CAS  Google Scholar 

  • Londesborough J., Vuorio O.: Purification of trehalose synthase from bakers’ yeast — its temperature dependent activation by fructose 6-phosphate and inhibition by phosphate.Eur.J.Biochem.216, 841–848 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Lopez M., Baker V.H.: Understanding the growth phenotype of the yeastger1 mutant in terms of global genomic expression patterns.J.Bacteriol.182, 4970–4978 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Ma P., Goncalves T., Matetzek A., Dias M.C.L., Thevelein J.: The lag-phase rather than the exponential growth phase on glucose is associated with a higher cAMP level in wild type and cAPK-attenuated strains of the yeastSaccharomyces cerevisiae.Microbiology143, 3451–3459 (1997).

    PubMed  CAS  Google Scholar 

  • Meijer M.C.M., Boonstra J., Verkieli A.R., Verrips C.T.: Glucose repression inSaccharomyces cerevisiae is related to the glucose concentration rather than the glucose flux.J.Biol.Chem.273, 24102–24107 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Parrou J.L., François J.: A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells.Anal.Biochem.248, 186–188 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Pernambuco M.B., Windericks J., Crauvels M., Grifeon G., Mager M.H., Thevelein J.M.: Glucose triggered signaling inS. cerevisiae: different requirements for sugar phosphorylation between cells grown on glucose and those grown on nonfermentable carbon sources.Microbiology142, 1775–1782 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Santangelo M., Tornow J.: Efficient transcription of the glycolytic geneADH1 and three translational components requires theGCR1 product, which can act throughTUF/GRF1/RAP binding sites 1.Mol.Cell.Biol.10, 859–862 (1990).

    PubMed  CAS  Google Scholar 

  • Scott E.W., Allison H.E., Baker H.: Characterization ofTP1 gene expression in isogenic wild-type andgcrl-delection mutant strains ofSaccharomyces cerevisiae.Nucl.Acids Res.18, 7099–7107 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Steward P.R.: Analytical methods for yeasts, pp. 11–145 in D.W. Prescot (Ed.):Methods in Cellular Biology, Vol. 10. Academic Press, New York 1975.

    Google Scholar 

  • Thevelein J.M.: Signal transduction in yeast.Yeast10, 1753–1790 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Thevelein J.M., Hohmann S.: Trehalose synthase: guard to the gate of glycolysis in yeast?Trends Biol.Sci.20, 3–10 (1995).

    Article  CAS  Google Scholar 

  • Türkel S.: TheGCR1 gene function is essential for glycogen and trehalose metabolism inSaccharomyces cerevisiae.Folia Microbiol.47, 663–666 (2002).

    Article  Google Scholar 

  • Uemura H., Fraenkel D.G.:gcr2, a new mutation affecting glycolytic gene expression inS. cerevisiae.Mol.Cell.Biol.10, 6389–6396 (1990).

    PubMed  CAS  Google Scholar 

  • Uemura H., Fraenkel D.G.: Glucose metabolism ingcr mutants ofSaccharomyces cerevisiae.J.Bacteriol.181, 4719–4723 (1999).

    PubMed  CAS  Google Scholar 

  • Uemura H., Jigami Y.: Role ofGCR2 in transcriptional activation of yeast glycolytic genes.Mol.Cell.Biol.12, 3834–3842 (1992).

    PubMed  CAS  Google Scholar 

  • Uemura H., Koshi M., Inoue Y., Lopez C., Baker H.: The role of Gcr1p in the transcriptional activation of glycolysis genes in yeastS. cerevisiae.Genetics147, 521–532 (1997).

    PubMed  CAS  Google Scholar 

  • Van Dijck P., Colavizza D., Smet P., Thevelein T.M.: Differential importance of trehalose in stress resistance in fermenting and nonfermentingSaccharomyces cerevisiae cells.Appl.Environ.Microbiol.61, 109–115 (1995).

    PubMed  Google Scholar 

  • Van Leare A.: Trehalose, reserve and/or stress metabolite.FEMS Microbiol.Rev.63, 201–210 (1989).

    Google Scholar 

  • Wiemken A.: Trehalose in yeast, stress protectant rather than reserve carbohydrate.Antonie van Leeuwenhoek58, 209–217 (1990).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Şeker.

Additional information

This work was supported by grant no. TOCTAG-2730 of theScientific and Technical Research Council of the Turkish Republic (TUBITAK) and by grant no. AFP-2000-07-02-12 of theInstitute of Natural and Applied Science. Middle East Technical University (Ankara).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Şeker, T., Hamamci, H. Trehalose, glycogen and ethanol metabolism in thegcrl mutant ofSaccharomyces cerevisiae . Folia Microbiol 48, 193–198 (2003). https://doi.org/10.1007/BF02930955

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02930955

Keywords

Navigation