Skip to main content
Log in

Biological conversion of coal gas to methane

Scientific note

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biological conversion of low-Btu coal synthesis gas to higher Btu methane was demonstrated using both pure co-cultures and/or adapted-mixed anaerobic bacteria.Peptostreptococcus productus metabolized coal gas to mainly acetate and CO2. The co-cultures containing methanogens converted these products to methane. In mixed culture studies, CH4 and small amounts of acetate were produced. Reactor studies using stirred-tank and immobilized cell reactors exhibited excellent potential to convert CO, CO2 and H2 to methane at higher gas flow rates. Gas retention times ranging from 0.7 to 2 hours and high agitation were required for 90 percent CO conversion in these systems. This paper also illustrates the potential of biological methanation and demonstrates the need for good mass transfer in converting gas phase substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ljungdahl, L. G., and Wiegel, J. (1986), “Working with Anaerobic Bacteria,” (Demain, A. L., Solomon, N. A., ed.), inManual of Industrial Microbiology and Biotechnology, ch. 8, pp. 84–96, ASM, Washington, DC.

    Google Scholar 

  2. Escalamte-Semerena, J. C, Rinehart, Jr., K. L., and Wolfe, R. S. (1984), “New Insights into the Biochemistry of Methanogenesis from H2 and CO2,” pp. 191 – 198, in (Crawford, R. L., and Hanson, R. S., eds.),Microbial Growth on C1 Compounds. Proc. 4th Int. Symp. Microbioh., Washington, DC.

  3. Jones, W. J., Nagle, Jr., D. P., and Whitman, W. B. (1987), “Methanogens and the Diversity of Archaebacteria,”Microb. Rev. 51(1) 135–177.

    CAS  Google Scholar 

  4. Huser, B. A., Wuhrmann, K., and Zehnder, A. J. B. (1982),Methanothrix soehngenii nov. sp. nov., A New Acetotrophic Non-Hydrogen-Oxidizing Methane Bacterium,”Arch. Microbial.,132, 1–9.

    Article  CAS  Google Scholar 

  5. Daniels, L., Fuchs, G., Thauer, R. K., and Zeikus, L. G. (1977), “Carbon Monoxide Oxidation by Methanogenic Bacteria,”J. Bacteriol.,132, 118–126.

    CAS  Google Scholar 

  6. Fisher, F., Leiske, R., and Winzer, K. (1981), “Umstzung in des Kohlenoxyds,”Biochem. Z.,236, 247–267.

    Google Scholar 

  7. Fisher, F., Leiske, R., and Winzer, K. (1932), “Uber die bildung von Essigsaure bei der biologischen Umsetzung von Kohlenoxyd Und Kohlensaure mit Wasserstoff zu Methan,”Biochem. Z.,245, 2–12.

    Google Scholar 

  8. Stephenson, M., and Strickland, L. H. (1933), “The Bacterial Formation of Methane by the Reduction of One-Carbon Compounds by Molecular Hydrogen,”Biochem. J., 1417 – 1527.

  9. Kluyver, A. J., and Schnellen, C. G. (1947), “On the Fermentation of Carbon Monoxide by Pure Cultures of Methane Bacteria,”Arch. Biochem. 14, 57–70.

    CAS  Google Scholar 

  10. Uffen, R. L. (1976), “Anaerobic Growth of aRhodoseudomonas Species in the Dark With Carbon Monoxide as Sole Carbon and Energy Substrate,”Proc. Natl. Acad. Sci. USA,73, 3298–3302.

    Article  CAS  Google Scholar 

  11. Dushekvicz, M. P. and Uffen, R. L. (1979), “Identification of a Carbon Monoxide-Metabolizing Bacterium as a Strain ofRhosospeudomonas gelatinosa,” Int. Jnl. System. Bad.,29, 145–148.

    Google Scholar 

  12. Breed, R. S., Murray, E. G. D., and Smith, N. R. (1977),Bergey’s Manual of Determinative Bacteriology, (8th ed.), Williams and Wilkins, Baltimore, MD.

    Google Scholar 

  13. Lorowitz, W. H., and Bryant, M. P. (1984), “Peptostreptococcus productus Strain that Grows Rapidly with CO as the Energy Source,”Appl. and Envir. Microbiol. 47, 961–964.

    CAS  Google Scholar 

  14. Zeikus, J. G., (1983), “Metabolism of One-Carbon Compounds by Chemotrophic Anaerobes,”Adv. in Micro. Physiol.,24, 224.

    Google Scholar 

  15. Genthner, B. R. S., and Bryant, M. P. (1983), “Growth ofEubacterium limosum with Carbon Monoxide as the Energy Source,”Appl. and Envir. Microbiol. 43, 70–74.

    Google Scholar 

  16. Smith, M. R., and Mah, R. A. (1978), “Growth and Methanogenesis byMethanosarcina Strain 227 on Acetate and Methanol,”Appl. Environ. Microbiol. 36, 870–879.

    CAS  Google Scholar 

  17. Hungate, R. E. (1950), “The Anaerobic, Mesophilic, Cellulolytic Bacteria,”Bacteriol. Rev.,14, 1–49.

    CAS  Google Scholar 

  18. Bryant, M. P. (1972), “Commentary on the Hungate Technique for Culturing Anaerobic Bacteria,”Am. J. Clin. Nutr. 25, 1324–1328.

    CAS  Google Scholar 

  19. Balch, W. E., and Wolfe, R. S. (1976), “New Approach to the Cultivation of Methanogenic Bacteria: 2-Mercaptoethane Sulfonic Acid (HS-COM)-Dependent Growth ofMethanobacterium ruminantium in a Pressurized Atmosphere,”Appl. Environ. Microbiol. 32, 781–791.

    CAS  Google Scholar 

  20. Barik, S., Vega, J. L., Johnson, E. R., Clausen, E. C, and Gaddy, J. L. (1987), “Methanation of Synthesis Gas Using Biological Processes,”Biotechnol. Appl. to Fossil Fuels, CRC Press.

  21. Bailey, J. E., and Ollis, D. F. (1986),Biochem. Eng. Fund., 2nd ed., McGraw-Hill, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barik, S., Vega, J.L., Clausen, E.C. et al. Biological conversion of coal gas to methane. Appl Biochem Biotechnol 18, 379–392 (1988). https://doi.org/10.1007/BF02930841

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02930841

Index Entries

Navigation