Skip to main content
Log in

The effect of platelet activating factor antagonist (BN 52021) on cerulein-induced acute pancreatitis with reference to oxygen radicals

  • Published:
International journal of pancreatology Aims and scope Submit manuscript

Summary

Acute edematous pancreatitis was induced in Wistar male rats by iv infusion of cerulein (CR) in the dose of 5.10-6g.kg-1.h-1 during 3 or 6 h. The effect of BN 52021—platelet activating factor (PAF) receptor antagonist, against this model of disease was examined. BN 52021 was applied iv as a bolus injection in the dose of 5.10-3g.kg-1 at 0 time. Treatment with this agent significantly ameliorates cerulein-induced acute pancreatitis in rats. The effect of BN 52021 was expressed by significant reduction of pancreas edema, diminution of hyperamylasemia, lack of superoxide dismutase activity depletion, and inhibition of lipid peroxidation in pancreatic tissue. These changes were accompanied by significant reduction of acinar cells vacuolization and remarkable inhibition of infiltration with inflammatory cells in the interacinar space. We suppose that beneficial effect of BN 52021 against cerulein-induced acute pancreatitis in rats depends on the prevention of inflammatory cells activation and subsequent generation of oxygen radicals within pancreatic tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Referenes

  1. Sanfey H, Bulkley G, Cameron J. The pathogenesis of acute pancreatitis: the role of oxygen-derived free radicals in the pathogenesis of acute pancreatitis. Ann. Surg. 1984; 200: 405–413.

    Article  PubMed  CAS  Google Scholar 

  2. Sanfey H, Bulkley G, Cameron J. The pathogenesis of acute pancreatitis: The source and role of oxygen-derived free radicals in three different experimental models. Ann. Surg. 1985; 201: 633–639.

    Article  PubMed  CAS  Google Scholar 

  3. Guice KS, Miller DE, Oldham KT, Townsend CM, Thompson JC. Superoxide dismutase and catalase: a possible role in established pancreatitis. Am. J. Surg. 1986; 151: 163–169.

    Article  PubMed  CAS  Google Scholar 

  4. Wisner JR, Renner IG. Allopurinol attenuates caerulein induced acute pancreatitis in the rat. Gut 1988; 29: 926–929.

    Article  PubMed  CAS  Google Scholar 

  5. Wisner J, Green D, Ferrell L, Renner I. Evidence for a role of oxygen derived free radicals in the pathogenesis of caerulein induced acute pancreatitis in rats. Gut 1988; 29: 1516–1523.

    Article  PubMed  CAS  Google Scholar 

  6. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 1979; 59: 527–605.

    PubMed  CAS  Google Scholar 

  7. Comporti M. Biology of disease. Lipid peroxidation and cellular damage in toxic liver injury. Lab. Invest. 1985; 53: 599–623.

    PubMed  CAS  Google Scholar 

  8. Freeman BA, Crapo JD. Biology of disease. Free radicals and tissue injury. Lab. Invest. 1982; 47: 412–426.

    PubMed  CAS  Google Scholar 

  9. Fridovich I. Biological effects of the superoxide radical. Arch. Biochem. Biophys. 1986; 247: 1–11.

    Article  PubMed  CAS  Google Scholar 

  10. Kappus H, Sies H. Toxic drug effects associated with oxygen metabolism: redox cycling and lipid peroxidation. Experientia 1981; 37: 1233–1241.

    Article  PubMed  CAS  Google Scholar 

  11. McCord JM, Fridovich I. Superoxide dismutase, an enzymic function for erythrocuprein. J. Biol. Chem. 1969; 244: 6049–6055.

    PubMed  CAS  Google Scholar 

  12. Marklund SL. Extracellular superoxide dismutase in human tissues and human cell lines. J. Clin. Invest. 1984; 74: 1398–1403.

    Article  PubMed  CAS  Google Scholar 

  13. Dabrowski A, Gabryelewicz A, Wereszczyńska-Siemiatkowska U, Chyczewski L. Oxygen- derived free radicals in cerulein-induced acute pancreatitis. Scand. J, Gastroenterol. 1988; 23: 1245–1249.

    Article  CAS  Google Scholar 

  14. Benveniste J, Henson PM, Cochrane CG. Leukocyte-dependent histamine release from rabbit platelets. I. The role of IgE, basophils and platelet activating factor. J. Exp. Med. 1972; 136: 1356–1377.

    Article  PubMed  CAS  Google Scholar 

  15. Braquet P. The Ginkgolides: Potent platelet-activating factor antagonists isolated from Ginkgo biloba L. Drugs of the Future 1987; 12: 643–699.

    Google Scholar 

  16. Soling HD, Eibl H, Fest W. Acetylcholine-like effects of l-O-alkyl-2-acetyl-sn-glycero-3- phosphocholine (“platelet-activating factor”) and its analogues in exocrine secretory glands. Eur. J. Biochem. 1984; 144: 65–72.

    Article  PubMed  CAS  Google Scholar 

  17. Emanuelli G, Montrucchio G, Gaia E, Dughera L, Corvetti G, Gubetta L. Experimental acute pancreatitis induced by platelet activating factor in rabbits. Am. J. Pathol. 1989; 134: 315–326.

    PubMed  CAS  Google Scholar 

  18. Janear S, De Giaccobi G, Braquet P. Immune complex-induced pancreatitis. Effect of BN 52021, a selective antagonist of platelet activating factor, In: The Ginkgolides: Chemistry, Biology, Pharmacology and Clinical Sciences. P. Braquet (Ed.). Meth. Find. Exp. Clin. Pharmacol. 1987.

  19. Lampel M, Kern HF. Acute interstitial pancreatitis in the rat induced by excessive doses of a pancreatic secretagogue. Virchows Arch. (A) 1977; 373: 97–117.

    CAS  Google Scholar 

  20. Myers CE, McGuire WP, Liss RH, Ifrim I, Grotzinger K, Young RC. Adriamycin: The role of lipid peroxidation in cardiac toxicity and tumor responce. Science 1977; 197: 165–167.

    Article  PubMed  CAS  Google Scholar 

  21. Smith JB, Ingerman CB, Silver MJ. Malondiaidehyde formation as an indicator of pro- staglandin production by human platelets. J. Lab. Clin. Med. 1976; 88: 167–172.

    PubMed  CAS  Google Scholar 

  22. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972; 247: 3170–3175.

    PubMed  CAS  Google Scholar 

  23. Sykes JA, McCormack FX, O’Brien TJ. A preliminary study of the superoxide dismutase content of some human tumors. Cancer Res. 1978; 38: 2759–2762.

    PubMed  CAS  Google Scholar 

  24. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951; 193: 265–275.

    PubMed  CAS  Google Scholar 

  25. Caraway WT. A stable starch substrate for the determination of amylase in serum and other body fluids. Am. J. Clin. Path. 1959; 33: 97–108.

    Google Scholar 

  26. Niederau C, Ferrell LD, Grendell JH. Caerulein-induced acute necrotizing pancreatitis in mice: protective effects of proglumide, benzotript, and secretin. Gastroenterology 1985; 88: 1192–1204.

    PubMed  CAS  Google Scholar 

  27. Rutledge PL, Saluja AK, Powers RE, Steer ML. Role of oxygen-derived free radicals in diet-induced hemorrhagic pancreatitis in mice. Gastroenterology 1987; 93: 41–47.

    PubMed  CAS  Google Scholar 

  28. Forman HJ, Thomas MJ. Oxidant production and bactericidal activity of phagocytes. Ann. Rev. Physiol. 1986; 48: 669–680.

    Article  CAS  Google Scholar 

  29. Suematsu M, Kurose I, Asako H, Miura S, Tsuchiya M. In vivo visualization of oxyradical- dependent photoemission during endothelium-granulocyte interaction in microvascular beds treated with platelet-activating factor. J. Biochem. 1989; 106: 355–360.

    PubMed  CAS  Google Scholar 

  30. Soling HD, Fest W. Synthesis of l-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor) in exocrine glands and its control by secretagogues. J. Biol. Chem. 1986; 261: 13916–13922.

    PubMed  CAS  Google Scholar 

  31. Gilrane Glover WJ, Granger DN, Holt SL, and Powers RE. A temporal role of neutrophils in the pathogenesis of caerulein-induced acute pancreatitis. Pancreas (abstr.) 1989; 4: 617.

    Google Scholar 

  32. Karges W, Willemer S, Feddersen CO, Adler G. The influence of experimental granulo- cytopenia on cerulein-induced pancreatitis in the rat. Pancreas (abstr.) 1989; 4: 622.

    Google Scholar 

  33. Lankisch PG, Pohl U, Otto J, Rahlf G. When should treatment of acute experimental pancreatitis be started? The early phase of bile induced acute pancreatitis. Res. Exp. Med. 1988; 188: 123–129.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dabrowski, A., Gabryelewicz, A. & Chyczewski, L. The effect of platelet activating factor antagonist (BN 52021) on cerulein-induced acute pancreatitis with reference to oxygen radicals. Int J Pancreatol 8, 1–11 (1991). https://doi.org/10.1007/BF02930218

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02930218

Key Words

Navigation