Skip to main content
Log in

Molecular phylogeny of Rodentia in the descent of genusBandicota

  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The interrelationships of murids and other rodent families as well as the evolutionary descent of multiple β-globins of murines are deduced from parsimony trees of relevant globin sequences. Our results show that Caviidae arises first, followed by Sciuridae which joins Muridae. In the murid line of descent Spalacinae arises first followed by two branches, one representing Cricentinae and Arvicolinae and the other Murinae. Although the rates of evolution of globin genes in the different rodent families are different, the murid branches show more or less a uniform rate of evolution of β globins. We have used this information to show that mouse-rat divergence occurred around 20 million years ago. The evolutionary rationale for the presence and the expression of different β-globin genes in murid populations is also discussed. Based on mitochondrial DNA restriction fragment analysis, the between-species relationships ofRattus rattus rufescens, Bandicota indica andBandicota bengalensis have been assessed and the time of divergence of the two bandicoot rats estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baglioni C. 1962 The fusion of two peptide chains in hemoglobin lepore and its interpretation as a genetic deletion.Proc. Natl. Acad. Sci. USA 48: 1880–1886

    Article  PubMed  CAS  Google Scholar 

  • Balani A. S. and Barnabas J. 1965 Polypeptide chains os buffalo hemoglobins.Nature (London) 205: 1019–1021

    Article  Google Scholar 

  • Barnabas J., Goodman M. and Moore G. W. 1972 Descent of mammalian alpha globin chain sequences investigated by the maximum parsimony method.J. Mol. Biol. 69: 249–278

    Article  PubMed  CAS  Google Scholar 

  • Barnabas J., Mathew P. A., Ratnaparkhi M. V. and Barnabas S. 1978 Evolutionary genetics of hemoglobins and myoglobins during Cenozoic history.J. Biochem. Biophys. 15: 388–400

    CAS  Google Scholar 

  • Barnabas J. and Muller C. J. 1962 Hemoglobin-Lepore Hollandia.Nature (London) 194: 931–932

    Article  CAS  Google Scholar 

  • Barnabas S. 1989 Phylogenetic relationships of three Indian murine rats deduced from mitochondrial DNA restriction fragment analysis.Natunvissenschaften 76: 481–482

    Article  CAS  Google Scholar 

  • Bonhomme F., Iskandar D., Thaler L. and Petter F. 1985 Eleclromorphs and phylogeny in muroid rodents. In:Evolutionary relationships among rodents. A multidisciplinary analysis, (eds.) W. P. Luckett and J. L. Hartenberger, NATO ASI series (New York: Plenum) pp. 671–683

    Google Scholar 

  • Brown W. M. and Vinograd J. 1974 Restriction endonuclease cleavage maps of animal mitochondrial DNAs.Proc. Natl. Acad. Sci. USA. 71: 4617–4621

    Article  PubMed  CAS  Google Scholar 

  • Clegg J. B. 1974 Horse hemoglobin polymorphism.Ann. N. Y. Acad. Sci. 241: 61–69

    Article  PubMed  CAS  Google Scholar 

  • Ellerman J. R. 1961 InThe fauna of India including Pakistan, Burma and Ceylon. Mammalia (ed.) J. R. Roonwal, pp. 815–817

  • Erhart M. A., Simons K. S. and Weaver S. 1985 Evolution of the mouse betaglobin genes: a recent gene conversion in the Hbb haplotype.Mol. Biol. Evol 2: 304–320

    PubMed  CAS  Google Scholar 

  • Flynn L. J., Jacobs L. L, and Lindsay E. H. 1985 Problems in muroid phylogeny: relationship to other rodents and origin of major groups. InEvolutionary relationships among rodents. A multidisciplinary analysis. (eds.) W. P. Luckett and J. L. Hartenberger, NATO ASI series (New York: Plenum) pp. 589–616

    Google Scholar 

  • Garrick L. M., Sharma V. S., McDonald M. J. and Ranney H. M. 1975 Rat hemoglobin heterogeneity: Two structurally distinct α chains and functional behaviour of selected components.Biochem. J. 149: 245–258

    PubMed  CAS  Google Scholar 

  • Garrick L. M., Sloan R. L., Ryan T. W., Klonowski T. J. and Garrick M. D. 1978 Primary structure of the major β-chain of rat hemoglobins.Biochem. J. 173: 321–330

    PubMed  CAS  Google Scholar 

  • Gilrnan J. G. 1976 Mouse hemoglobin beta chains. Comparative sequence data on adult major and minor beta chains from two species,Mus muscutus andMus cervicolor.Biochem. J. 159: 43–53

    Google Scholar 

  • Goodman M., Mlyamoto M. M. and Czelusniak J. 1987 Pattern and process in vertebrate phylogeny revealed by co-evolution of molecules and morphologies. In:Molecules and morphology in evolution: Conflict or compromise? (ed.) C. Patterson (Cambridge: University Press.) pp. 141–176

    Google Scholar 

  • Graur D., Hilde W. A. and Li W. -H. 1991 Is the guinea-pig a rodent?Nature (London) 351: 649–652

    Article  CAS  Google Scholar 

  • Hanbarhatty, M. S., Prabhakar J. D., Rembhotkar G. W. and Barnabas J. 1983 Genetic models for the quantitative variation of two α-chains of hemoglobins in water buffalo population.Nucleus 26: 30–35

    Google Scholar 

  • Hartenberger J. L. 1985 The order rodentia: Major questions on their evolutionary relationships and suprafamilial systematics. In:Evolutionary relationships among rodents. A multidisciplinary analysis. (eds.) W. P. Luckett and J. L. Hartenberger, NATO ASI series (New York: Plenum) pp. 1–33

    Google Scholar 

  • Hutton J. J., Bishop J., Schweet R. and Russell E. S. 1962 Hemoglobin inheritance in inbred mouse strains I. Structural difference.Proc. Natl. Acad. Sci. USA 48: 1505–1513

    Article  PubMed  CAS  Google Scholar 

  • Jacobs L. L. 1979 Tooth cusp homology of murid rodents based on Miocene fossils from Pakistan.Casopis pro Mineralogii a Geologii 24: 301–304

    Google Scholar 

  • Jakovcic S., Casey J. and Rabinowitz M. 1975 Sequence homology between mitochondrial DNAs of different eukaryotes.Biochemistry 14: 2043–2050

    Article  PubMed  CAS  Google Scholar 

  • Konkel D. A., Maizel J. B. Jr. and Leder P. 1979 The evolution and sequence comparison of two recently diverged mouse chromosomal β-globin genes.Cell 18: 865–873

    Article  PubMed  CAS  Google Scholar 

  • Kowalski K. 1974 Middle Oligocene rodents from Mongolia. Results Polish-Mongolian Paleont. Exped. 5,Paleontol. Pol. 30: 147–178

    Google Scholar 

  • Krishnan S., Barnabas S. and Barnabas J. 1990 Interrelationships among major protistan groups based on a parsimony network of 5S rRNA sequences.BioSystems 24: 135–144

    Article  PubMed  CAS  Google Scholar 

  • Lauer J., Shen C. -K. J. and Maniatis T. 1981 The chromosomal arrangement of human α-like globin genes: sequence homology and α-globin gene deletions.Cell. 20: 119–130

    Article  Google Scholar 

  • Mathew P. A., Furtado M., Ahaley S. K. and Barnabas J. 1984 Examination of evolutionary trends of hemoglobins of old world monkeys. InCurrent primate research (eds.) M. L. Roonwal, S. M. Monhot and N. S. Rathore (Jodhpur University) pp. 221–234

  • McKenna M. C. 1975 Towards a phylogenetic classification of the Mammalia. InPhylogeny of primates: a multidisciplinary approach (eds.) W. P. Luckett and F. S. Szalay (New York: Plenum) pp. 21–46

    Google Scholar 

  • Moore G. W., Barnabas J. and Goodman M. 1973 A method for constructing maximum parsimony ancestral amino acid sequences on a given network.J. Theor. Biol. 38: 459–485

    Article  PubMed  CAS  Google Scholar 

  • Nei M. and Li W. 1979 Mathematical model for studying genetic variation in terms of restriction endonucleases.Proc. Natl. Acad. Sci. USA. 76: 5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Nute P. E. 1974 Multiple hemoglobin α-chain loci in monkeys, apes and man.Ann. N. Y. Acad. Sci. 241: 39–70

    Article  PubMed  CAS  Google Scholar 

  • Ohshita Y. and Hozumi T. 1987 Sequence of the rat beta-globin mRNANucleic Acids Res. 15: 1336

    Article  PubMed  CAS  Google Scholar 

  • Pratap P G., John M. E. and Barnabas J. 1978 Multiple hemoglobin forms and their genetic implications in two wild species of murines.Folia Biochim. Biol. Graeca 14: 22–28

    CAS  Google Scholar 

  • Pratap P. G., Nandi J. and Barnabas J. 1980 Evolutionary trends in the hemoglobins of murine animals.J. Biosci. 2: 369–378

    Article  CAS  Google Scholar 

  • Proudfoot N. J., Gil A. and Maniatis T. 1982 The structure of the human zetaglobin gene and a closely linked, nearly identical pseudogene.Cell 31: 553–563

    Article  PubMed  CAS  Google Scholar 

  • Radosavljevic D. and Crkvenjakov R. 1989 Genomic sequence of rat betaglobin major gene.Nucleic Acids Res. 17: 4368

    Article  PubMed  CAS  Google Scholar 

  • Romer S. 1966Paleontology (Chicago: University Press)

  • Saitou N. and Nei M. 1987 The neighbor-joining method: A new method for reconstructing phylogenetic trees.Mol. Biol. Evol. 4: 406–425

    PubMed  CAS  Google Scholar 

  • Satoh H., Fujii H. and Okazaki T. 1987 Molecular cloning and sequence analysis of two rat major globin cDNAs.Biochem. Biophys. Res. Commun. 146: 618–624

    Article  PubMed  CAS  Google Scholar 

  • Shen S. -H., Slightom J. L. and Smithies O. 1980 A history of human fetal globin gene duplication.Cell 26: 191–203

    Article  Google Scholar 

  • Shoshani J., Goodman M., Czelusniak J. and Braunitzer G. 1985 A phytogeny of rodentia and other eutherian orders: Parsimony analysis using amino acid sequences of alpha and beta hemoglobin chains. In:Evolutionary relationships among rodents. A multidisciplinary analysis. (eds.) W. P. Luckett and J. L. Hartenberger, NATO ASI series (New York: Plenum) pp. 589–616

    Google Scholar 

  • Slightom J. L, Blechl A. E. and Smithies O. 1980 Human fetalGγ-globin genes andAγ-globin genes: complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes.Cell 21: 627–638

    Article  PubMed  CAS  Google Scholar 

  • Spolsky C. and Uzzell T. 1984 Natural interspecies transfer of mitochondrial DNA in amphibians.Proc. Natl. Acad. Sci. USA. 81: 5802–5805

    Article  PubMed  CAS  Google Scholar 

  • Stevanovic M. and Crkvenjakov R. 1989 Genomic sequence of rat beta-globin minor gene.Nucleic Acids Res. 17: 4878

    Article  PubMed  CAS  Google Scholar 

  • Wilson A. C, Cann R. L., Carr R. M., George M., Gyllensten U. B. ImBychowski K. M., Higuchi R. G., Palumbi S. R., Pragir E. M, Sage R. D. and Stoneking M. 1985 Mitochondrial DNA and two perspectives on evolutionary genetics.Biol. J. Linn. Soc. 26: 375–400

    Article  Google Scholar 

  • Wong W. M, Lam V. M. S., Cheng L. Y. L. and Tam J. W. O. 1988 Genomic sequence of a Sprague-Dawley rat beta-globin gene.Nucleic Acids Res. 16: 2342

    Article  PubMed  CAS  Google Scholar 

  • Zimmer E. A., Martin S. L., Beverley S. M., Kan Y. W. and Wilson A. C. 1980 Rapid duplication and loss of genes coding for the α-chains of hemoglobin.Proc. Natl. Acad. Sci. USA. 77: 2158–2162

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnabas, S., Krishnan, S. & Barnabas, J. Molecular phylogeny of Rodentia in the descent of genusBandicota . J. Genet. 71, 43–56 (1992). https://doi.org/10.1007/BF02927874

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02927874

Keywords

Navigation