Skip to main content
Log in

Evolution of polyembryony: Consequences to the fitness of mother and offspring

  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Polyembryony, referring here to situations where a nucellar embryo is formed along with the zygotic embryo, has different consequences for the fitness of the maternal parent and offspring. We have developed genetic and inclusive fitness models to derive the conditions that permit the evolution of polyembryony under maternal and offspring control. We have also derived expressions for the optimal allocation (evolutionarily stable strategy, ESS) of resources between zygotic and nucellar embryos.

It is seen that (i) Polyembryony can evolve more easily under maternal control than under that of either the offspring or the ‘selfish’ endosperm. Under maternal regulation, evolution of polyembryony can occur for any clutch size. Under offspring control polyembryony is more likely to evolve for high clutch sizes, and is unlikely for low clutch sizes (<3). This conflict between mother and offspring decreases with increase in clutch size and favours the evolution of polyembryony at high clutch sizes, (ii) Polyembryony can evolve for values of “x” (the power of the function relating fitness to seed resource) greater than 0.5758; the possibility of its occurrence increases with “x”, indicating that a more efficient conversion of resource into fitness favours polyembryony. (iii) Under both maternal parent and offspring control, the evolution of polyembryony becomes increasingly unlikely as the level of inbreeding increases, (iv) The proportion of resources allocated to the nucellar embryo at ESS is always higher than that which maximizes the rate of spread of the allele against a non-polyembryonic allele.

Finally we argue that polyembryony is a maternal counter strategy to compensate for the loss in her fitness due to brood reduction caused by sibling rivalry. We support this assertion by two empirical evidences: (a) the extent of polyembryony is positively correlated with brood reduction inCitrus, and (b) species exhibiting polyembryony are more often those that frequently exhibit brood reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adarsh Kumar and Gupta B. B. 1987 Twin seedlings inAlbizia lebbek (L.) Benth.Indian J. Forestry 10: 313

    Google Scholar 

  • Adarsh Kumar, Gupta B.B. and Uma Singh 1991 Polyembryony inAcacia nilotica.Indian For. 117:124–125 1991 Polyembryony inAcacia nilotica. Indian For. 117: 124-125

    Google Scholar 

  • Adarsh Kumar, Gupta B. N. and Venkatesh C. S. 1977a A note on twin seedlings inPterospermum acerifolium Willd.Indian For. 103: 679

    Google Scholar 

  • Adarsh Kumar, Bhatnagar H. P. and Venkatesh C. S. 1977b Twin seedlings in Shisham (Dalbergia sissoo Roxb.).Indian For. 103: 770

    Google Scholar 

  • Bhojwani S. S. and Bhatnagar S. P. 1974The embryology of angiosperms (New Delhi: Vikas Publishing House Pvt. Ltd.)

    Google Scholar 

  • Copeland, H. F. 1966 Morphology and embryology ofEuonymus japonica.Phytomorphology 16: 326–334

    Google Scholar 

  • Dabral S. L. 1977 Polyembryony in teak.Indian For. 103: 694–695

    Google Scholar 

  • Desai S. 1962 Polyembryony inXanthoxylum Mill.Phytomorphology 12: 184–189

    Google Scholar 

  • Frost H. B. 1926 Polyembryony, heterozygosis and chimera in citrus.Hilgardia 1: 365–402

    Google Scholar 

  • Gustaffson A. 1946 Apomixis in higher plants (Parts I–IV)Lunds Univ. Arsskr. n.f. Adv. II, 42.

  • Haig D. and Westoby M 1989 Parent-specific gene expression and the triploid endosperm.Am. Nat. 134: 147–155

    Article  Google Scholar 

  • Hamilton W. D. 1972 Altruism and related phenomena, mainly in social insects.Annu. Rev. Ecol. Syst. 3: 193–232

    Article  Google Scholar 

  • Iglesias L., Lima H., Simon J. P. 1974 Isozyme identification of zygotic and nucellar seedlings in Citrus.J. Hered. 65: 81–84

    Google Scholar 

  • Kaur A., Ha C. O., Jong K., Sands V. E., Chan H. T., Soepadno, E. and Ashton P. S. 1978 Apomixis may be widespread among trees of the climax rain forest.Nature (London) 271: 440–442

    Article  Google Scholar 

  • Khoklov S. S. 1976 Evolutionary genetic problems of apomixis in angiosperms. InApomixis and plant breeding (eds) S. S. Khoklov (New Delhi: Amerind)

    Google Scholar 

  • Lakshmanan K. K. and Ambegaokar K. B. 1984 Polyembryony. InEmbryology of angiosperms (eds) B. M. Johri (New York: Springer-Verlag) pp. 445–474

    Google Scholar 

  • Lloyd D. G. 1989 The reproductive ecology of plants and eusocial animals. InTowards a more exact ecology (eds) J. Whitaker and P. J. Grubbs (Oxford: Blackwell) pp. 185–207

    Google Scholar 

  • Lovett Doust J. and Lovett Doust L. 1988 Sociobiology of plants: An emerging synthesis. InPlant reproductive strategies: Patterns and strategies (eds) J. Lovett Doust and L. Lovett Doust (Oxford: Oxford University Press) pp. 18–19

    Google Scholar 

  • Maheswari P. 1950An introduction to the embryology of angiosperms (New York: Mc-Graw Hill)

    Google Scholar 

  • McGinley M. A., Temme D. H. and Geber M. A. 1987 Parental investment in offspring in variable environments: theoretical and empirical considerations.Am. Nat. 130: 370–398

    Article  Google Scholar 

  • Narayanswami S. and Roy S. K. 1960 Embryo sac development and polyembryony inSyzygium cumini (Linn.) Skeels.Bot. Not. 3: 273–284

    Google Scholar 

  • O’Connor R. J. 1978 Brood reduction in plants: selection for fratricide, infanticide and suicide.Anitn. Behav. 26: 79–96

    Article  Google Scholar 

  • Pieringer A. P. and Edwards G. J. 1965 Identification of nucellar and zygotic Citrus seedlings by infrared spectroscopy.Proc. Am. Soc. Hortic. Sci. 86: 226–234

    CAS  Google Scholar 

  • Queller D. C. 1983 Kin selection and conflict in seed maturation.J. Theor. Biol. 100: 153–172

    Article  Google Scholar 

  • Queller D. C. 1989 Inclusive fitness in a nutshell. InOxford Surveys in Evolutionary Biology (eds) P. H. Harvey and L. Patridge (Oxford: University Press) 6: 73–109

    Google Scholar 

  • Rangan T. S., Murashige T. and Bitters W. P. 1969In vitro studies of zygotic and nucellar embryogenesis in Citrus.Proc. First Intl. Citrus Symp. 1: 225–229

    Google Scholar 

  • Rangaswamy N. S. 1959 Morphogenetic response of Citrus ovules to growth adjuvants in culture.Nature (London) 183: 735–736

    Article  Google Scholar 

  • Roy S. K. 1953 Embryology ofEugenia jambos L.Curr. Sci. 22: 249–250

    Google Scholar 

  • Roy S. K. 1961 Embryology ofEugenia fruticosa L.Proc. Natl. Acad. Sci., India, Sect. B. 31: 80–87

    Google Scholar 

  • Sachar R. C. 1955 The embryology ofArgemone mexicana L.-A reinvestigation.Phytomorphology 5: 200–218

    Google Scholar 

  • Sachar R. C. and Chopra R. N. 1957 A study of the endosperm and embryo inMangifera L.Indian J. Agric. Sci. 27: 219–228

    Google Scholar 

  • Stebbins G. L. 1941 Apomixis in angiosperms.Bot. Rev. 8: 507–542

    Article  Google Scholar 

  • Strasburger E. 1878 Ueber polyembryonie.Jen. Zeits. Naturw. 12: 647–670

    Google Scholar 

  • Swamy B. G. L. 1948 Agamospermy inSpiranthes cernua. Lloydia (Cinci) 11: 149–162

    Google Scholar 

  • Tiagi Y. D. 1970 Cactaccae. In Symposium on “Comparative embryology of angiosperms”.Bull. Indian Natl. Sci. Acad. 41: 29–35

    Google Scholar 

  • Tisserat B., Esan E. B. and Murashige T. 1979 Somatic embryogenesis in angiosperms.Hortic. Rev. 1: 1–78

    Google Scholar 

  • Toxopeus H. J. 1930 De polyembryonie van citrus en haar beteenkenis voor de cultuur.Vereen. Landbouw Nederl. Indie Landbouw Tijdkschr. 6: 807–819

    Google Scholar 

  • Uma Devi K. V. 1983Studies on the embryogenesis in monoembryonic citron (Citrus medica L.)and polyembryonie Khagzi lime (Citrus aurantifolia Swing.), M. Sc. thesis, University df Agricultural Sciences, Bangalore

    Google Scholar 

  • Uma Shaanker R., Ganeshaiah K. N. and Bawa K. S. 1988 Parent-offspring conflict, sibling rivalry, and brood reduction in plants.Annu. Rev. Ecol. Syst. 19: 177–205

    Article  Google Scholar 

  • Uma Shaanker R., Ganeshaiah K. N. and Radhamani T. R. 1990 Associations among the modes of pollination and seed dispersal- ecological factors and phylogenetic constraints.Evolutionary Trends in plants 4: 107–111

    Google Scholar 

  • Uma Singh and Adarsh Kumar 1990 Polyembryony and cotyledon abnormality inLeucaena leucocephala.Indian For. 116: 420–422

    Google Scholar 

  • Van der Pijl L 1934 Uber die Polyembryonie bei Eugenia.Recl. Trav. Bot. Neerl. 31: 113–187

    Google Scholar 

  • Venkatesh C. S. and Sharma V. K. 1974 Some unusual seedlings of Eucalyptus: their genetic significance and value in breeding.Silvae Genet. 23: 120–124

    Google Scholar 

  • Westoby M. and Rice B 1982 Evolution of seed plants and inclusive fitness of plant tissues.Evolution 36: 713–724

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganeshaiah, K.N., Uma Shaanker, R. & Joshi, N.V. Evolution of polyembryony: Consequences to the fitness of mother and offspring. J Genet 70, 103–127 (1991). https://doi.org/10.1007/BF02927810

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02927810

Keywords

Navigation