Skip to main content
Log in

Biotransformations of anthracyclinones inStreptomyces coeruleorubidus andStreptomyces galilaeus

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The ability to transform biologically exogenous daunomycinone, 13-dihydrodaunomycinone, aklavinone, 7-deoxyaklavinone, ε-rhodomycinone, ε-isorhodomycinone and ε-pyrromycinone was studied in submerged cultures of the following strains: wildStreptomyces coeruleorubidus JA 10092 (W1) and its improved variants 39–146 and 84–17 (type P1) producing glycosides of daunomycinone and of 13-dihydro-daunomycinone, together with ε-rhodomycinone, 13-dihydrodaunomycinone and 7-deoxy-13-dihydro-daunomycinone; in five mutant types ofS. coeruleorubidus (A, B, C, D, E) blocked in the biosynthesis of glycosides and differing in the production of free anthracyclinones; in the wildStreptomyces galilaeus JA 3043 (W2) and its improved variant G-167 (P2) producing glycosides of ε-pyrromycinone and of aklavinone together with 7-deoxy and bisanhydro derivatives of both aglycones; in two mutant typesS. galilaeus (F and G) blocked in biosynthesis of glycosides and differing in the occurrence of anthracyclinones. The following bioconversions were observed: daunomycinone → 13-dihydrodaunomycinone and 7-deoxy-13-di-hydrodaunomycinone (all strains); 13-dihydrodaunomycinone → 7-deoxy-13-dihydrodaunomycinone (all strains); daunomyeinone or 13-dihydrodaunomycinone → glycosides of daunomyeinone and of 13-dihydrodaunomycinone, identical with metabolites W1 and P1 (type A), or only a single glycoside of daunomyeinone (type E); aklavinone → ε-rhodomycinone (types A and B); aklavinone → 7-deoxyaklavinone and bisan-hydroaklavinone (type C); ε-rhodomycinone → ζ-rhodomycinone (types C, E); ε-rhodomycinone → glycosides of ε-rhodomycinone (types W2, P2); ε-isorhodomycinone → glycosides of ε-isorhodomycinone (types W2, P2); ε-pyrromycinone → a glycoside of ε-pyrromycinone (types W1, P1). 7-Deoxyaklavinone remained intact in all tests. Exogenous daunomyeinone suppressed the biosynthesis of its own glycosidea in W1 and P1; it simultaneously increased the production of ε-rhodomyeinone in P1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aszalos A. A., Bachur N. R., Hamilton B. K., Langlykke A. F., Roller P. P., Sheikh M. Y., Sutphin M. S., Thomas M. C., Wareheim D. A., Wright L. H.: Microbial reduction of the side-chain carbonyl of daunorubicin and N-acetyldaunorubicin.J. Antibiotics 30, 50 (1977).

    CAS  Google Scholar 

  • Bachur N. R., Gee M.: Daunorubicinol metabolism by rat tissue preparations.J. Pharmacol. Exp. Ther. 177, 567 (1971).

    PubMed  CAS  Google Scholar 

  • Bachur N. R., Gee M.: Oxygen sensitive reductive cleavage of daunorubicin and adriamycin.Fed. Proc. 31, 835 (1972).

    Google Scholar 

  • Bachur N., Gee M.: Microsomal reductive glycosidase.J. Pharmacol. Exp. Ther. 197, 681 (1976).

    PubMed  CAS  Google Scholar 

  • Blumauerová M., Matějů J., Stajner K., Vaněk Z.: Studies on the production of daunomycinone-derived glycosides and related metabolites inStreptomyces coeruleorubidus andStreptomyces peucetius.Folia Microbiol. 22, 275 (1977).

    Article  Google Scholar 

  • Blumauerová M., Pokorný V., Šťastná J., Hošťálek Z., Vaněk Z.: Improved yields of daunomycinone glycosides in developmental mutants ofStreptomyces coeruleorubidus.Folia Microbiol. 23, 249 (1978a).

    Article  Google Scholar 

  • Blumauerová M., Stajner K., Pokorný V., Hošťálek Z., Vaněk Z.: Mutants ofStreptomyces coeruleorubidus impaired in the biosynthesis of daunomycinone glycosides and related metabolite.Folia Microbiol. 23, 255 (1978b).

    Article  Google Scholar 

  • Blumauerová M., Královcová E., Hošťálek Z., Vaněk Z.: Intra- and interspecific cosynthetic activity of mutants ofStreptomyces coeruleorubidus andStreptomyces galilaeus impaired in the biosynthesis of anthracyclines.Folia Microbiol. 24, 128 (1979).

    Article  Google Scholar 

  • Bradler G., Eckardt K., Fügner R.: Zur Charakterisierung des Streptomyces-Stammes JA 3043 und Gewinnung von Galirubin.Z. Allg. Mikrobiol. 6, 361 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Huffman D. H., Bachur N. R.: Daunorubicin metabolism in acute myelocytic leukemia.Blood 39, 637 (1972).

    PubMed  CAS  Google Scholar 

  • Jizba J., Sedmera P., Vokoun J., Blumauerová M., Vaněk Z.: Naphthacenequinone derivatives from a mutant strainStreptomyces coeruleorubidus.Coll. Czech. Chem. Commun. 44, in press (1979).

  • Karnetová J., Matějů J., Sedmera P., Vokoun J., Vaněk Z.: Microbial transformation of daunomycinone byStreptomyces aureofaciens B-96.J. Antibiotics 29, 1199 (1976).

    Google Scholar 

  • Kern D. L., Bunge R. H., French J. C., Dion H. W.: The identification of ε-rhodomycinone and 7-deoxy- daunorubicinol aglycone in daunorubicin beers.J. Antibiotics 30, 432 (1977).

    CAS  Google Scholar 

  • Komiyama T., Matsuzawa Y., Oki T., Inui T., Takahashi Y., Naganawa H., Takeuchi T., Umezawa H.: Baumycins, new antitumor antibiotics related to daunomycin.J. Antibiotics 30, 619 (1977).

    CAS  Google Scholar 

  • Královcová E., Blumauerová M., Vaněk Z.: Strain improvement inStreptomyces galilaeus, a producer of anthracycline antibiotics galirubins.Folia Microbiol. 22, 321 (1977a).

    Article  Google Scholar 

  • Královcová E., Tax J., Blumauerová M., Vaněk Z.: Bewertung der Produktion von Glycosiden des ε-Pyrromycinons (Galirubine) bei der Züchtung des StammesStreptomyces galilaeus.Z. Allg. Mikrobiol. 17, 47 (1977b).

    Article  PubMed  Google Scholar 

  • Marshall V. P., Reisender E. A., Reinere L. M., Johnson J. H., Wiley P. F.: Reductive microbial conversion of anthracycline antibiotics.Biochemistry 15, 4139 (1976a).

    Article  PubMed  CAS  Google Scholar 

  • Marshall V. P., Reisender E. A., Wiley P. F.: Bacterial metabolism of daunomycin.J. Antibiotics 29 966 (1976b).

    CAS  Google Scholar 

  • Matéjů J., Vokoun J., Blumauerová M., Vaněk Z.: 7-Deoxy-13-dihydrodaunomycinone in cultures ofStreptomyces coeruleorubidus.Folia Microbiol. 23, 246 (1978).

    Article  Google Scholar 

  • Matéjů J., Blumauerová M., Vaněk Z.: Activity of enzymes transforming daunomycin inStreptomyces coeruleorubidus.Folia Microbiol. 24, 000 (1979).

    Google Scholar 

  • McCarville M., Marshall V.: Partial purification and characterization of a bacterial enzyme catalyzing reductive cleavage of anthracycline glycosides.Biochem. Biophys. Res. Commun. 74, 331 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Ninet L., Florent J., Lunel J., Renault J., Abraham A., Lombardi B., Tissier R.: Duborimycin (20798 RP) — preparation by biochemical reduction of daunorubicin. 5th Internat. Ferment. Symp. Berlin. Abstracts of Papers (H. Dellweg, Ed.), p. 320 (1976).

  • Oki T., Komiyama T., Tone H., Inui T., Takeuchi T., Umezawa H.: Reductive cleavage of anthracycline glycosides by microsomal NADPH-cytochromec reductase.J. Antibiotics 30, 613 (1977).

    CAS  Google Scholar 

  • Paranosenkova V. I., Karpov V. L.: Rubomycin biosynthesis. Glycosylation of exogenic rubomycinone and carminomycinone by rubomycin-producing organism. (In Russian)Antibiotiki 22, 37 (1977).

    PubMed  CAS  Google Scholar 

  • Takahashi Y., Naganawa H., Takeuchi T., Umezawa H., Komiyana T., Oki T., Inui T.: The structure of baumyeins A1, A2, B1, B2, C1 and C2.J. Antibiotics 30, 622 (1977).

    CAS  Google Scholar 

  • Vaněk Z., Tax J., Komersová I., Eckardt K.: Glycosidation of ε-pyrromycinone using the strainStreptomyces galilaeus JA 3043.Folia Microbiol. 18, 524 (1973).

    Article  Google Scholar 

  • Vaněk Z., Tax J., Komersová I., Sedmera P., Vokoun J.: Anthracyclines.Folia Microbiol. 22, 139 (1977).

    Article  Google Scholar 

  • Wiley P. F., Marshall V. P.: Microbial conversion of anthracycline antibiotics.J. Antibiotics 28, 838 (1975).

    CAS  Google Scholar 

  • Wiley P. F., Koert F. H., Elrod D. M., Reisender E. A., Marshall V. P.: Bacterial metabolism of anthracycline antibiotics. Steffimycinone and steffimycinol.J. Antibiotics 30, 649 (1977).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

ε-Rhodomycinone, 13-dihydrodaunomycinone and 7-deoxy-13-dihydrodaunomycinone were also found in other strains producing glycosides of daunomycinone (Kernet al. 1977; Komiyamaet al. 1977). Sugar components of glycosides isolated fromS. coeruleorubidus ME 130-A 4 were identified by Takahashiet al. (1977).

The author wish to thank Dr. W. Koch (Central Institute for Microbiology and Experimental Therapy, Jena, GDR) for the sample of ε-isorhodomycinone and Dr. P. Sedmera and Dr. J. Vokoun (Institute of Microbiology, Czechoslovak Academy of Sciences, Prague) for the measurement of NMR and mass spectra confirming the identity of the isolated anthracyclinones with the standards.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blumauerová, M., Královcová, E., Matějů, J. et al. Biotransformations of anthracyclinones inStreptomyces coeruleorubidus andStreptomyces galilaeus . Folia Microbiol 24, 117–127 (1979). https://doi.org/10.1007/BF02927295

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02927295

Keywords

Navigation