Skip to main content
Log in

Polar actions on Hilbert space

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

An isometricH-action on a Riemannian manifoldX is calledpolar if there exists a closed submanifoldS ofX that meets everyH-orbit and always meets orbits orthogonally (S is called a section). LetG be a compact Lie group equipped with a biinvariant metric,H a closed subgroup ofG ×G, and letH act onG isometrically by (h 1,h 2) ·x = h 1 xh −12 · LetP(G, H) denote the group ofH 1-pathsg: [0, 1] →G such that (g(0),g (1)) ∈H, and letP(G, H) act on the Hilbert spaceV = H 0([0, 1], g) isometrically byg * u = gug −1g′g −1. We prove that if the action ofH onG is polar with a flat section then the action ofP(G, H) onV is polar. Principal orbits of polar actions onV are isoparametric submanifolds ofV and are infinite-dimensional generalized real or complex flag manifolds. We also note that the adjoint actions of affine Kac-Moody groups and the isotropy action corresponding to an involution of an affine Kac-Moody group are special examples ofP(G, H)-actions for suitable choice ofH andG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bott, R., and Samelson, H., Applications of the theory of Morse to symmetric spaces.Amer. J. Math. 80, 964–1029 (1958).

    Article  MathSciNet  Google Scholar 

  2. Bourbaki, N.,Groupes et Algebres de Lie. Hermann, Paris, 1968.

    MATH  Google Scholar 

  3. Conlon, L., The topology of certain spaces of paths on a ocmpact symmetric space.Trans. Amer. Math. Soc. 112, 228–248 (1964).

    Article  MATH  MathSciNet  Google Scholar 

  4. Conlon, L., Variational completeness and K-transversal domains.J. Differential Geom. 5, 135–147 (1971).

    MATH  MathSciNet  Google Scholar 

  5. Conlon, L., A class of variationally complete representations.J. Differential Geom. 7, 149–160 (1972).

    MATH  MathSciNet  Google Scholar 

  6. Dadok, J., Polar coordinates induced by actions of compact Lie groups.Trans. Amer. Math. Soc. 288, 125–137 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  7. Ferus, D., Karcher, H., and Münzner, H. F., Cliffordalgebren und neue isoparametrische hyperflächen.Math. Z. 177, 479–502 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  8. Helgason, S.,Differential Geometry and Symmetric Spaces. Academic Press, 1978.

  9. Hermann, R., Variational completeness for compact symmetric spaces.Proc. Amer. Math. Soc. 11, 554–546 (1960).

    Google Scholar 

  10. Kac, V. G.,Infinite Dimensional Lie Algebras. Cambridge University Press, 1985.

  11. Ozeki, H., and Takeuchi, M., On some types of isoparametric hypersurfaces in spheres, I.Tohoku Math. J. 127, 515–559 (1975).

    Article  Google Scholar 

  12. Ozeki, H., and Takeuchi, M., On some types of isoparametric hypersurfaces in spheres, II.Tohoku Math. J. 28, 7–55 (1976).

    Article  MATH  Google Scholar 

  13. Palais, R. S., Morse theory on Hilbert manifolds.Topology 2, 299–340 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  14. Palais, R. S.,Foundations of Global Non-linear Analysis. Benjamin Co., New York, 1968.

    MATH  Google Scholar 

  15. Palais, R. S., and Terng, C. L., A general theory of canonical forms.Trans. Amer. Math. Soc. 300, 771–789 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  16. Palais, R. S., and Terng, C. L.,Critical Point Theory and Submanifold Geometry, Lecture Notes in Math., vol. 1353. Springer-Verlag, Berlin and New York, 1988.

    Google Scholar 

  17. Pinkall, U., and Thorbergsson, G., Examples of infinite dimensional isoparametric submanifolds.Math. Z. 205, 279–286 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  18. Pressley, A., and Segal, G. B.,Loop Groups. Oxford Science Publ., Clarendon Press, Oxford, 1986.

    MATH  Google Scholar 

  19. Terng, C. L., Isoparametric submanifolds and their Coxeter groups.J. Differential Geom. 21, 79–107 (1985).

    MATH  MathSciNet  Google Scholar 

  20. Terng, C. L., Proper Fredholm submanifolds of Hilbert spaces.J. Differential Geom. 29, 9–47 (1989).

    MATH  MathSciNet  Google Scholar 

  21. Terng, C. L., Variational completeness and infinite dimensional geometry.Proceedings of Leeds Conference, edited by L. Verstraelen and A. West.Geometry and Topology of Submanifolds, III, pp. 279–293. World Scientific, Singapore, 1991.

    Google Scholar 

  22. Thorbergsson, G., Isoparametric foliations and their buildings.Annals of Math. 133, 429–446 (1991).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported partially by NSF Grant DMS 8903237 and by The Max-Planck-Institut für Mathematik in Bonn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terng, CL. Polar actions on Hilbert space. J Geom Anal 5, 129–150 (1995). https://doi.org/10.1007/BF02926445

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02926445

Math Subject Classification

Key Words and Phrases

Navigation