Statistical Papers

, Volume 38, Issue 4, pp 409–421 | Cite as

A test for randomness of the environments in a branching process

  • Mohan Kale
  • T. V. Ramanathan
Articles

Abstract

This paper discusses an approximate score test for testing randomness of environments in a branching process without observing the environments. Using an appropriate martingale central limit theorem the asymptotic null distribution of test statistic is shown to be normal. When the offspring distribution is Poisson, the detail derivation of asymptotic distribution of the test statistic is presented.

Key words

Random environments branching process Martingale central limit theorem score test 

References

  1. Athreya, K. B. and Karlin, S. (1971). On branching process with random environments I–IIAnn. Math. Stat. 42, p. 1499–1520 and 1843–1858.CrossRefMathSciNetGoogle Scholar
  2. Becker, N. (1977). Estimation for discrete time branching process with application to epidemics.Biometrics,33, p. 515–522.MATHCrossRefMathSciNetGoogle Scholar
  3. Billingsley, P. (1968).Convergence of Probability Measures, John Wiley, New York.MATHGoogle Scholar
  4. Dion, J.P. and Esty, W.W. (1979). Estimation problems in branching processes with random environments,Ann. Stat. 7, No. 3., p. 680–685.MATHCrossRefMathSciNetGoogle Scholar
  5. Dion, J.P. and Essebbar (1994). On statistics of controlled branching processes. Tech. Report. March 1994, No. University of du Quebec a Montreal.Google Scholar
  6. Guttorp, P. (1991).Statistical Inference for Branching Processes, John Wiley, New York.MATHGoogle Scholar
  7. Scott, D. J. (1978). A central limit theorem for martingales and applications to branching processes.Stoch. Proc. Appl. 6, p. 241–252.MATHCrossRefGoogle Scholar
  8. Smith, W. L. (1968). Necessary conditions for almost sure extinction of a branching process with random environment.Ann. Math. Stat.,39, p. 2136–2140.CrossRefGoogle Scholar
  9. Smith, W. L. and Wilkinson, W. (1969). On branching processes in random environments.Ann. of Math. Stat. 40, 814–827.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Mohan Kale
    • 1
  • T. V. Ramanathan
    • 1
  1. 1.Department of StatisticsUniversity of PunePuneIndia

Personalised recommendations