Skip to main content
Log in

Comparative study of nitrogen and oxygen metabolism enzymes in Yugoslav cultivars of alfalfa (Medicago sativa L.)

  • Original paper
  • Published:
Biologia Plantarum

Abstract

Four Yugoslav cultivars of alfalfa were investigated in order to determine nitrogen fixing (nitrogenase), nitrogen assimilation (nitrate reductase, glutamine synthetase, glutamate dehydrogenase) and antioxidant (Superoxide dismutase, catalase, peroxidase) enzymes activities. The level of lipid peroxidation and protein content were also investigated. On the basis of the results obtained a resistant cultivar with high nitrogen fixing and a cultivar with high nitrogen assimilation abilities were chosen. The cultivar with high nitrogen fixing ability had high activities of nitrogenase, Superoxide dismutase, peroxidase and catalase, and also a low level of lipid peroxidation. The cultivar with high assimilation ability had high activities of nitrate reductase, glutamine synthetase and glutamate dehydrogenase and high soluble protein content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NR:

nitrate reductase

GS:

glutamine synthetase

GDH:

glutamate dehydrogenase

NG:

nitrogenase

AA:

amino acids

SOD:

Superoxide dismutase

P:

peroxidase

C:

catalase

LP:

lipid peroxidation

MDA:

malonyldialdehyde

TBA:

thiobarbituric acid

LSD:

least significant difference

References

  • Atkins, C.A., Pate, J.S., Layzell, B.D.: Assimilation and transport of nitrogen in nonnodulated (NO3-grown)(Lupinus albus L.). — Plant Physiol.64: 1078–1082, 1979.

    PubMed  CAS  Google Scholar 

  • Barta, L.A.: Metabolic response ofMedicago sativa L. andLotus corniculatus L. roots to anoxia. — Plant Cell Environ.9: 127–131, 1986.

    Article  CAS  Google Scholar 

  • Bergensen, F.J.: Ammonia — an early stable product of nitrogen fixation by soybean root nodules. — Aust. J. biol. Sci.18: 1–9, 1965.

    Google Scholar 

  • Buchanan, A.: The response ofAzptobacter chroococcum to oxygen: Superoxide-mediated effects. — Can. J. Microbiol.23: 1548–1553, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Cheeseman, K.H., Beavis, A., Esterbaurer, H.: Hydroxyl radical-induced iron catalysed degradation of 2-deoxyribose. — Biochem. J.252: 649–653, 1988.

    PubMed  CAS  Google Scholar 

  • Coombs, J., Hall, O.D.: Techniques in Bioproductivity and Photosynthesis. — Pergamon Press, Oxford 1982.

    Google Scholar 

  • Deroche, M.E., Babalar, M.:In vivo nitrate reductase activities in different organs of lucerne(Medicago sativa L.) plants: Effects of combined nitrogen during first vegetative growth and after shoot harvest. — Physiol. Plant.70: 90–98, 1987.

    Article  CAS  Google Scholar 

  • Gidrol, X., Sergihini, H., Nobhani, B., Mocquot, B., Mazliak, P.: Biochemical changes induced by accelerated aging in sunflower seeds. Lipid peroxidan'on and membrane damage. — Physiol. Plant.76: 591–697, 1987.

    Article  Google Scholar 

  • Groat, R.G., Vance, C.P.: Root nodule enzymes of ammonia assimilation in alfalfa(Medicago sativa L.). — Plant Physiol.67: 1198–1203, 1981.

    PubMed  CAS  Google Scholar 

  • Groat, R.G., Vance, C.P.: Root and nodule enzymes of ammonia assimilation in two plant- conditioned symbiotically ineffective genotypes of alfalfa(Medicago sativa L.). — Plant Physiol.69: 614–618, 1982.

    PubMed  CAS  Google Scholar 

  • Halliwell, B., Gutteridge, J.M.C.: Free Radicals in Biology and Medicine. — Claredon Press, Oxford 1986.

    Google Scholar 

  • Henson, C.A., Collins, M., Duke, H.S.: Subcellular localization of enzymes of carbon and nitrogen metabolism in nodules ofMedicago sativa. — Plant Cell Physiol.23: 227–235, 1982.

    CAS  Google Scholar 

  • Hippeli, S.C., Elstner, E.F.: Disel-soot-catalyzed production of reactive oxygen species: Cooperative effects with bisulfite. — Z. Naturforsch.44: 514–523, 1989.

    CAS  Google Scholar 

  • Ishii, S.: Generation of active oxygen species during enzymic isolation of protoplasts from oat leaves. —In vitro Cell. Develop. Biol.23: 635–658, 1987.

    Article  Google Scholar 

  • Jones, P.: Catalases and iron-porphyrin model systems: Roles of the coordination environment of iron in catalytic mechanisms. — In: Dunford H.B. (ed.): The Bilogical Chemistry of Iron. Pp. 427-438. 1982.

  • Kanematsu, S., Asada, K.: Cu-Zn-Superoxide Dismutases in rice: Occurrence of on active monomeric enzyme and two types of isozyme in leaf and non-photosynthetic tissues. — Plant Cell Physiol.30: 381–391, 1989.

    CAS  Google Scholar 

  • Kennedy, I.R.: Primary products of symbiotic nitrogen fixation. II. Pulse labeling ofSerradella nodules with15N2. — Biochim. biophys. Acta130: 295–303, 1966.

    PubMed  CAS  Google Scholar 

  • Lowry, O.H., Rosenbrough, N.J., Farr, L.A., Randall, R.J.: Protein measurement with the Folin phenol reagent. — J. biol. Chem.193: 265–275, 1951.

    PubMed  CAS  Google Scholar 

  • Matkovics, B., Gasič, O., Varga, S.I., Štajner, D., Kraljevič-Balalič, M.: The antioxidant enzyme activities in wheat seeds and their F1 hybrids. — Cereal Res. Commun.17: 113–119, 1989.

    CAS  Google Scholar 

  • Matkovics, B., Novak, R., Duc Hanh, H., Szabo, L., Varga, S.I., Zelesna, G.: A comparative study of some more important experimental animal peroxide metabolisms enzymes. — Comp. Biochem. Physiol.56B: 31–34, 1977.

    Google Scholar 

  • Matsumoto, T., Yatazawa, M., Yamamoto, Y.: Incorporation of15N into allantion in nodulated soybean plants supplied with15N2. — Plant Cell Physiol.18: 459–462, 1977.

    CAS  Google Scholar 

  • Melhorn, H., Wellburn, R.A.: Ozone toxicity mechanisms in plants and animals. — In: Free Radicals: Chemistry, Pathology and Medicine. Pp. 253–270. Richelieu Press, London 1988.

    Google Scholar 

  • Mirsa, H.D., Fridovics, T.: The role of Superoxide anion in the autoxidation of epinephrine and a simple measurement for Superoxide dismutase. — J. biol. Chem.247: 3170–3175, 1972.

    Google Scholar 

  • Placer, Z.A., Cusman, L.L., Johnson, B.C.: Estimation of product of lipid peroxidation malonyldialdehyde in biochemical systems. — Anal. Biochem.16: 359–364, 1966.

    Article  PubMed  CAS  Google Scholar 

  • Puppo, A., Riguard, J.: Superoxide dismutase: an essential role in the protection of the nitrogen fixation process. — FEBS Lett.201: 187–189, 1986.

    Article  CAS  Google Scholar 

  • Seetin, M.W., Barnes, D.K.: Variation among alfalfa genotypes for rate of acetylene reduction. — Crop Sci.17: 783–787, 1977.

    CAS  Google Scholar 

  • Simon, L.M., Fatrai, Z., Jonas, D.E., Matkovics, B.: Study of metabolism enzymes during the development ofPhaseolus vulgaris. — Biochem. Physiol. Pflanzen166: 389–393, 1974.

    Google Scholar 

  • Trung-Chanh, T.A., Mohamed, A.F., Ferais, D.H.: Pathways of nitrogen metabolism in nodules of alfalfa (Medicago sativa L.). — Plant Physiol.80: 1002–1005, 1986.

    Google Scholar 

  • Van Berkum, P., Sloger, C.: Interaction of combined nitrogen with the expression of root-associated nhrogenase activity in grasses and with the development of N2 fixation in soybean(Glycine max L. Merr.). — Plant Physiol.72: 741–745, 1983.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Štajner, D., Popovič, M., Gašič, O. et al. Comparative study of nitrogen and oxygen metabolism enzymes in Yugoslav cultivars of alfalfa (Medicago sativa L.). Biol Plant 34, 77–83 (1992). https://doi.org/10.1007/BF02925794

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02925794

Keywords

Navigation