Skip to main content
Log in

Segregation in the progeny of transformed rapeseed (Brassica napus)

  • Oroginal Papers
  • Published:
Biologia Plantarum

Abstract

The primary transformant of spring rapeseed cv. HM-81 contained TL- and TR-DNA of agropine plasmid pRi ofAgrobacterium rhizogenes 15834. The presence of TL-DNA corresponds to visible transformed phenotype in its progeny; the leaves are wrinkled and the plants are shorter than normal plants. R1 R2 and R3 generations have mostly transformed phenotype. The normal phenotype appears in a low frequency in F1 generation. Autogamised F1 plants segregate in F2 transformed and normal phenotype in 3:1 ratio. It is possible to suppose that TL-DNA is present in two differentloci of one pair of homologic chromosomes. The recombination frequency is 12 % (microsporogenesis) or 6 % (microsporogenesis and macrosporogenesis). In some crosses the transformed phenotype has a maternal type of inheritance. Maternal inheritance influences also several growth characteristics,e.g. length of plants and number of seeds/pods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amasino, R.M., Powell, A.L.T., Gordon, M.P.: Changes in T-DNA methylation and expression are associated with phenotypic variation and plant regeneration in a crown gall tumor line. Mol. gen. Genet.197: 437–446, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Banga, S.S.: Hybrid pollen-aided induction of matromorphy inBrassica. Z. Pflanzenzücht96: 86- 89, 1986.

    Google Scholar 

  • Birot, A.-M, Bouchez, D., Casse-Delbart, F., Durand-Tardif, M., Jouanin, L., Pautot, V., Robaglia, C, Tepfer, D., Tepfer, M., Tourneur, J., Vilaine, F.: Studies and uses of the Ri plasmids ofAgrobacterium rhizpgenes. Plant Physiol. Biochem.25: 323–335, 1987.

    CAS  Google Scholar 

  • Brauer, D., Röbbelen, G.: Entwicklung und Zukunft der Rapserzeugung in der Bundesrepublik Deutschland. Fat Sci. Technol.91: 158–164, 1989.

    Google Scholar 

  • Brown, P.T.H.: DNA methylation in plants and its role in tissue culture. Genome31: 717–729, 1989.

    CAS  Google Scholar 

  • Charest, P.J., Hollbroock, L.A., Gabard, J., Iyer, N.V., Miki, B.L.: Agrobacterium-mediated transformation of thin cell layer expiants fromBrassica napus L. Theor. appl. Genet.75: 438- 445, 1988.

    Article  Google Scholar 

  • DeBlock, M., Schell, J., VanMontagu, M.: Chloroplast transformation byAgrobacterium tumefaciens. EMBO J.4: 1367–1372, 1985.

    PubMed  Google Scholar 

  • Doležel, J.: [Flowstar: A microcomputer program for flow cytometric data manipulation and analysis.] Biológia (Bratislava)44: 287–291, 1989. [In Czech.]

    Google Scholar 

  • Doležel, J., Binarová, P., Lucreti, S.: Analysis of nuclear DNA content in plant cells by flow cytometry. Biol. Plant.31: 113–120, 1989.

    Article  Google Scholar 

  • Dusbábková, J., Nečásek. J., Hrouda, M.: [Transformation of oilseed rape with T-DNA ofAgrobacterium plasmids.] Genet. Šlechtěnf (Praha)25: 1–9, 1989. [In Czech.]

    Google Scholar 

  • Fry, J., Barnason, A., Horsch, R.B.: Transformation ofBrassica napus withAgrobacterium tumefaciens based vectors. Plant Cell Rep.6: 321–325, 1987.

    Article  CAS  Google Scholar 

  • Guerche, P., Jouanin, L., Tepfer, D., Pelletier, G.: Genetic transformation of oilseed rape(Brassica napus) by the Ri T-DNA ofAgrobacterium rhizogenes and analysis of inheritance of the transformed phenotype. Mol. gen. Genet.206: 382–386, 1987.

    Article  CAS  Google Scholar 

  • Hrouda, M., Dusbábková, J., Nečásek, J.: Detection of Ri T-DNA in transformed oilseed rape regenerated from hairy roots. Biol. Plant.30: 234–236, 1988.

    Article  Google Scholar 

  • Huffman, G.A. White, F.F., Gordon, M.P., Nester, E.W.: Root-inducing plasmid: physical map and homology to tumor-inducing plasmids. J. Bacteriol.157: 269–276, 1984.

    PubMed  CAS  Google Scholar 

  • Jouanin, L.: Restriction map of an agropine-type Ri plasmid and its homologies with Ti plasmids. Plasmid12: 91–102, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Knauf, V.C.: The application of genetic engineering to oilseed crops. Trends Biotechnol5: 40–47, 1987.

    Article  CAS  Google Scholar 

  • Maniatis, T., Fritsch, E.E., Sambrook, J.: Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 1982.

    Google Scholar 

  • Memelink, J., Wullems, G.J., Schilperoort, R.A.: Nopaline T-DNA is maintained during regeneration and generative propagation of transformed tobacco plants. Mol. gen. Genet190: 516–522, 1983.

    Article  CAS  Google Scholar 

  • Ooms, G., Bain, A., Burrell, M., Karp, A., Twell, D., Wilcox, E.: Genetic manipulation in cultures of oilseed rape(Brassica napus) usingAgrobacterium. Theor. appl. Genet.71: 325–329, 1985.

    Google Scholar 

  • Peerbolte, R., Floor, M., Ruigrok, P., Hoge, J.H.C., Wullems, G.J., Schilperoort, R.A.: Stability and expression of transferred DNA in F1 tobacco transformants studied at various states of differentiation. Planta172: 448–462, 1987.

    Article  CAS  Google Scholar 

  • Picken, A.J.F.: A review of pollination and fruit set in the tomato. J. hort. Sci.59: 1–13, 1984.

    Google Scholar 

  • Pua, E.-C., Mehra-Palta, A., Nagy, F., Chua, N.-H.: Transgenic plants ofBrassica napus L. Bio/Technology5: 815–817, 1987.

    Article  Google Scholar 

  • Radke, S.E., Andrews, B.M., Moloney, M.M., Crouch, M.L., Kridl, J.C., Knauf, V.C.: Transformation ofBrassica napus usingAgrobacterium tumefaciens: developmentally regulated expression of a reintroduced napin gene. Theor. appl. Genet.75: 685–694, 1988.

    Article  CAS  Google Scholar 

  • Röbbelen, G.: Beobachtungen bei interspezifischen Brassica-Kreuzungen, insbesondere Ober die Entstehung matromorpher F1-Pflanzen. Angew. Bot.39: 205–221, 1965.

    Google Scholar 

  • Scarisbrick, D.A., Atkinson, L., Asare, E.: Oilseed rape. Outlook Agr.18: 152–159, 1989.

    Google Scholar 

  • Schmttlling, T., Schell, J., Spena, A.: Single genes fromAgrobacterium rhizogenes influence plant development. EMBO J.7: 2621–2629, 1988.

    Google Scholar 

  • Spielmann, A., Simpson, R.B.: T-DNA structure in transgenic tobacco plants with multiple independent integration sites. Mol. gen. Genet.205: 34–41, 1986.

    Article  CAS  Google Scholar 

  • Taylor, B., Powel, A.: Isolation of plant DNA. Focus3: 3–5, 1983.

    Google Scholar 

  • Tepfer, D.: Transformation of several species of higher plants byAgrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell37: 959–967, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Wullems, G.J., Molendijk, L., Ooms, G., Schilperoort, R.A.: Retention of tumor markers in Fl progeny plants fromin vitro induced octopine and nopaline tumor tissues. Cell24: 719–727, 1981.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dusbábková, J., Nečásek, J., Hrouda, M. et al. Segregation in the progeny of transformed rapeseed (Brassica napus). Biol Plant 34, 53–61 (1992). https://doi.org/10.1007/BF02925790

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02925790

Keywords

Navigation