Skip to main content
Log in

Convergence properties for the Schrodinger equation

  • Conferenze
  • Published:
Rendiconti del Seminario Matematico e Fisico di Milano Aims and scope Submit manuscript

Sunto

Il lavoro è una rassegna di risultati recenti di convergenza q.o. della soluzioneu(x, t) dell’equazione di Schrödinger\(\Delta u = i\frac{{\partial u}}{{\partial t}}\) conu(x, 0)=f(x), dovef appartiene alla classe di Schwartz

. La convergenza q.o. è dedotta da stime quali

$$\left( {\int\limits_B {(\mathop {Sup}\limits_{0< t< 1} |u(x,t)|)^2 dx} } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \leqslant C_B \left\| f \right\|_{H_8 } $$

doveB è una ipersfera di

eH, denota lo spazio di Sobolev classico.

Summary

The paper is a survey of recent results on a.e. convergence of the solutionu(x, t) to the Schrödinger equation\(\Delta u = i\frac{{\partial u}}{{\partial t}}\) andu(x, 0)=f(x) wheref belongs to the Schwartz class

. A.e. convergence is established via estimates of the kind

$$\left( {\int\limits_B {(\mathop {Sup}\limits_{0< t< 1} |u(x,t)|)^2 dx} } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \leqslant C_B \left\| f \right\|_{H_8 } $$

whereB is a ball in

andH, denotes the classical Sobolev space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Carbery A.,Radial Fourier multipliers and associated maximal functions. Recent progress in Fourier analysis, North-Holland Mathematics Studies 111, 49–56.

  2. Carleson L.,Some analytical problems related to statistical mechanics. Euclidean Harmonic Analysis, Lecture Notes in Math. 779 (1979), 5–45.

    Article  MathSciNet  Google Scholar 

  3. Cowling M.,Pointwise behaviour of solutions to Schrödinger equations. Harmonic Analysis, Lecture Notes in Math. 992 (1983), 83–90.

    Article  MathSciNet  Google Scholar 

  4. Dahlberg B. E. J. andKenig C. E.,A note on the almost everywhere behaviour of solutions to the Schrödinger equation, Harmonic Analysis, Lecture Notes in Math. 908 (1982), 205–209.

    Article  MathSciNet  Google Scholar 

  5. Keinig C. E. andRuiz A.,A strong type (2,2)estimate for a maximal operator associated to th Schrödinger equation. Trans. Amer. Math. Soc. 280 (1983), 239–246.

    Article  MathSciNet  Google Scholar 

  6. Sjögren P. andSjölin P.,Convergence properties for the time-dependent Schrödinger equation. Manuscript 1987.

  7. Sjölin P.,Regularity of solutions to the Schrödinger equation. Dept. of Math., Uppsala University, Report No. 14, 1986. To appear in Duke Math. J.

  8. Vega L.,Schrödinger equations: pointwise convergence to the initial data. Manuscript 1986.

Download references

Author information

Authors and Affiliations

Authors

Additional information

(Conferenza tenuta il 27 marzo 1987)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sjölin, P. Convergence properties for the Schrodinger equation. Seminario Mat. e. Fis. di Milano 57, 293–297 (1987). https://doi.org/10.1007/BF02925057

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02925057

Keywords

Navigation