Skip to main content
Log in

Cicli algebrici sulle varieta’ singolari

  • Published:
Rendiconti del Seminario Matematico e Fisico di Milano Aims and scope Submit manuscript

Sunto

SiaX una varietà quasi-proiettiva su un corpo algebricamente chiuso. SeX è non-singolare è ben noto che si può definire una «teoria dell’intersezione» con valori nell’anello di Chow graduato diX e una teoria delle classi di Chern. In questo lavoro ci occupiamo del problema di come estendere tali risultati al caso in cuiX sia singolare. In particolare si vede come sia possibile definire una «teoria di Chow» suX a partire da una opportuna teoria coomologica (ad es. coomologa singolare, di De Rham, coomologia étale).

Summary

LetX be a quasi-projective variety over an algebraically closed field. WhenX is non singular there is a well known «intersection theory» with values in the graded Chow ring ofX. Here we consider the question of extending this theory to the singular case. In particular: we show how to develop a «Chow theory», starting with a suitable cohomology theory onX (e.g.: Singular cohomology, De Rham cohomology, étale cohomology).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliografia

  • [B]H. Bass: «Algebraic K-Theory» Benjamin, New York 1968.

    MATH  Google Scholar 

  • [B-F-Mc]P. Baum, W. Fulton, R. McPherson: «Riemann-Roch for singular varieties», IHES, Pubbl. Math. 45 (1975) pp. 101–144.

    MATH  Google Scholar 

  • [B-K-L]S. Bloch, A. Kas, D. Liebermann: «Zero Cycles on Surfaces withP g =0», Compositio Math., Vol. 33 (1976) pp. 135–145.

    MathSciNet  MATH  Google Scholar 

  • [BL]S. Bloch: «Lectures on Algebraic Cycles», Duke University Math. Series, IV Durban, 1980.

  • [B-O]S. Bloch, A. Ogus: «Gerten’s Conjecture and the homology of Schemes», Ann. Ecole Norm. Sup. vol. 47 (1974) pp. 181–202.

    MathSciNet  Google Scholar 

  • [C1]A. Collino: «Grothendieck’s K-theory and the cubic threefold with one ordinary double point», Rend. Sem. Mat. To. 36 (1977–78).

  • [C2]A. Collino: «Quillen’s K-theory and Algebraic Cycles on almost non singular varieties», Ill. J. of Math. vol. 25 (1981) pp. 254–666.

    MathSciNet  Google Scholar 

  • [C3]A. Collino: «Washnitzer’s Conjecture and the cohomology of a variety with a single isolated singularity», Ill. J. of Math, vol. 29, 3 (1985) pp. 353–364.

    MathSciNet  MATH  Google Scholar 

  • [F]W. Fulton: «Intersection Theory», Springer-Verlag 1984.

  • [F-G]W. Fulton, H. Gillet: «Riemann Roch for general Algebraic Varieties», Bull. Soc. Math. France 111 (1983) pp. 287–300.

    MathSciNet  MATH  Google Scholar 

  • [F-L]W. Fulton, S. Lang: «Riemann-Roch Algebra», Springer-Verlag 1985.

  • [G1]H. Gillet: «Riemann-Roch theorems for Higher-Algebraic» K-theory», Adv. in Math 40 (1981) pp. 203–289.

    Article  MathSciNet  MATH  Google Scholar 

  • [G2]H. Gillet: «Deligne Homology and Abel Jacobi maps», Bull. Am. Math Society, vol. 10 (1984) pp. 285–289.

    Article  MathSciNet  MATH  Google Scholar 

  • [Gr]A. Grotendieck: «Le groupes de Brauer I, II, III, Dix esposés sur la cohomologie des schemas, Amsterdam», North-Holland 1969.

    Google Scholar 

  • [H1]R. Hartshorne: «Algebraic Geometry», Springer-Verlag 1977.

  • [H2]R. Hartshorne: «Algebraic De Rham Cohomology», IHES 45 (1976).

  • [K]S. Kleiman: «The transversality of a general translate», Comp. Math. 28 (1974).

  • [L]M. Levine: «A geometric theory of the Chow Ring of a singular variety» Preprint (1986).

  • [L-W]M. Levine, C. Weibel: «Zero cycles and complete intersection on singular varieties», J. fur reine und ang. Math. 359 (1985) pp. 106–120.

    MathSciNet  MATH  Google Scholar 

  • [M-S]P. Murthy, R. Swan: «Vector bundles over affine surfaces», Inv. Math. 36 (1976) pp. 125–165.

    Article  MathSciNet  MATH  Google Scholar 

  • [P1]C. Pedrini: «On the K0 of certain polynomial extensions, Algebraic K-theory II», Lecture Notes in Math. 342 Springer-Verlag, 1973.

  • [P2]C. Pedrini: «Riemann-Roch and Chow theories for singular varieties» Preprint (1988).

  • [P-W1]C. Pedrini, C. Weibel: «K-theory and Chow groups on singular varieties» Contemporary Math. vol. 55 part 1 (1986).

  • [P-W2]C. Pedrini, C. Weibel: «Bloch’s formula for varieties with isolated singularities» Communications in Algebra 14 (1986) pp. 1895–1907.

    Article  MathSciNet  MATH  Google Scholar 

  • [Q]D. Quillen: «Higher Algebraic K-theory I» Lecture Notes in Math. 341 Springer-Verlag (1973).

  • [R]J. Roberts: «Chow’s moving lemma» Alg. Geometry, Oslo 1970 Walters-Noordoff (1972) pp. 89–96.

  • [R1]A. A. Roitmann: «Rational equivalence of zero cycles» Math. USSR Sbornik 18 (1972) pp. 571–588.

    Article  Google Scholar 

  • [R2] A. A. Roitmann: «The torsion of the group of zero cycles mod. rational equivalence» Ann. Math. III (1980).

  • [S]J. P. Serre: «Algebre locale et multiplicities» Lectures notes in Math 11, Springer-Verlag 1975.

  • [W1]C. Weibel: «Complete intersection points on affine varieties» Comm. in Algebra 12 (24) (1984) pp. 3011–3051.

    Article  MathSciNet  MATH  Google Scholar 

  • [W2]C. Weibel: «A Brown Gersten spectral sequence for the H-theory of varieties with isolated singularities», Adv. in Math. (to appear).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedrini, C. Cicli algebrici sulle varieta’ singolari. Seminario Mat. e. Fis. di Milano 57, 215–245 (1987). https://doi.org/10.1007/BF02925052

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02925052

Navigation