Skip to main content
Log in

Evolution of a recent neo-Y sex chromosome in a laboratory population ofDrosophila

  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

In many species of animals, one of the sexes has a chromosome that is structurally and functionally different from its socalled homologue. Conventionally, it is called Y chromosome or W chromosome depending on whether it is present in males or females respectively. The corresponding homologous chromosomes are called X and Z chromosomes. The dimorphic sex chromosomes are believed to have originated from undifferentiated autosomes. In extant species it is difficult to envisage the changes that have occurred in the evolution of dimorphic sex chromosomes. In our laboratory, interracial hybridization between twoDrosophila chromosomal races has resulted in the evolution of a novel race, which we have called Cytorace 1. Here we record that in the genome of Cytorace 1 one of the autosomes of its parents is inherited in a manner similar to that of a classical Y chromosome. Thus this unique Cytorace 1 has the youngest neo-Y sex chromosome (5000 days old; about 300 generations) and it can serve as a ‘window’ for following the transition of an autosome to a Y sex chromosome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bone J. R. and Kuroda M. I. 1996 Dosage compensation regulatory proteins and the evolution of sex chromosomes inDrosophila.Genetics 144, 705–713.

    PubMed  CAS  Google Scholar 

  • Charlesworth B. 1996 The evolution of chromosomal sex determination and dosage compensation.Curr. Biol. 6, 149–162.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B., Charlesworth D., Hnilicka J., Yu A. and Guttman D. S. 1997 Lack of degeneration of loci on the Neo-Y chromosome ofDrosophila americana americana.Genetics 145, 989–1002.

    PubMed  CAS  Google Scholar 

  • Hagele K. and Ranganath H. A. 1982a The chromosomes of twoDrosophila races:D. nasuta nasuta andD. n. albomicans. II Differences in their microchromosomes.Chromosoma 85, 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Hagele K. and Ranganath H. A. 1982b A centric fusion inD. nasuta albomicans.Drosoph. Inf. Serv. 70, 58.

    Google Scholar 

  • Harini B. P. and Ramachandra N. B. 1999 Racial divergence in sternopleural bristles among parental races and the newly evolved Cytoraces 1 and 2 of the nasuta-albomicans complex ofDrosophila.Curr. Sci. 76, 1017–1019.

    Google Scholar 

  • Lucchesi J. C. 1978 Gene dosage compensation and the evolution of sex chromosomes.Science 202, 711–716.

    Article  PubMed  CAS  Google Scholar 

  • Marin I., Franke G. I., Bradshaw G. I. and Baker B. S. 1996 The dosage compensation system ofDrosophila is co-opted by newly evolved X chromosomes.Nature 383, 160–163.

    Article  PubMed  CAS  Google Scholar 

  • Muller H. J. 1918 Genetic variability, twin hybrids and constant hybrids in a case of balanced lethal factors.Genetics 93, 422–499.

    Google Scholar 

  • Nirmala S. S. and Krishnamurthy N. B. 1971 Karyotype ofDrosophila nasuta.Drosoph. Inf. Serv. 47, 121–122.

    Google Scholar 

  • Patterson J. T. and Stone W. S. 1952Evolution in the genus Drosophila. Macmillan, New York.

    Google Scholar 

  • Ramachandra N. B. and Ranganath H. A. 1986 The chromosomes of twoDrosophila races:D. nasuta nasuta andD. nasuta albomicans. IV Hybridization and karyotype repatterning.Chromosoma 93, 243–248.

    Article  Google Scholar 

  • Ramachandra N. B. and Ranganath H. A. 1988 Estimation of population fitness of the parental races (D. n. nasuta andD. n. albomicans) and of the newly evolved Cytoraces (1 and 2)— the products of parental interracial hybridization.Genome 30, 58–62.

    Google Scholar 

  • Ramachandra N. B. and Ranganath H. A. 1990 The chromosomes of twoDrosophila races:D. nasuta nasuta andD. nasuta albomicans. V Introgression and the evolution of new karyotypes.Z. Zool. Syst. Evolutionsforsch. 28, 62–68.

    Google Scholar 

  • Ramachandra N. B. and Ranganath H. A. 1994 Pattern of sexual isolation between parental races (Drosophila nasuta nasuta andD. n. albomicans) and the newly evolved races (Cytoraces 1 and 2).Indian J. Exp. Biol. 32, 98–102.

    PubMed  CAS  Google Scholar 

  • Ramachandra N. B. and Ranganath H. A. 1996 Evolution of thenasuta-albomicans complex ofDrosophila.Curr. Sci. 71, 515–517.

    Google Scholar 

  • Ranganath H. A. and Hagele K. 1981 Karyotypic orthoselection inDrosophila.Naturwissenschaften 68, 527–528.

    Article  Google Scholar 

  • Ranganath H. A. and Hagele K. 1982 The chromosomes of twoDrosophila races:D. nasuta nasuta andD. n. albomicans. I Distribution and differentiation of heterochromatin.Chromosoma 85, 83–92.

    Article  PubMed  CAS  Google Scholar 

  • Ranganath H. A. and Ramachandra N. B. 1987 Chromosomal basis of raciation inDrosophila: A study withDrosophila nasuta andD. albomicans. Proc.Indian Acad. Sci. (Anim. Sci.)96, 451–459.

    Article  Google Scholar 

  • Ranganath H. A., Schmidt E. R. and Hagele K. 1982 Satellite DNA ofDrosophila nasuta nasuta andD. n. albomicans. Localization in polytene and metaphase chromosomes.Chromosoma 85, 361–368.

    Article  PubMed  CAS  Google Scholar 

  • Rice W. R. 1996a Degeneration of a nonrecombining chromosome.Science 263, 230–232.

    Article  Google Scholar 

  • Rice W. R. 1996b Evolution of the Y sex chromosome in animals. Y chromosomes evolve through the degeneration of autosomes.Bioscience 46, 331–343.

    Article  Google Scholar 

  • Rice W. R. 1998 Male fitness increases when females are eliminated from gene pool: Implications for the Y chromosomes.Proc. Natl. Acad. Sci. USA 95, 6217–6221.

    Article  PubMed  CAS  Google Scholar 

  • Steinemann M. and Steinemann S. 1997 The enigma of Y chromosome degeneration: TRAM, a novel retrotransposon is preferentially located on the Neo-Y chromosome ofDrosophila miranda.Genetics 145, 261–266.

    PubMed  CAS  Google Scholar 

  • Throckmorton L. H. 1982 Thevirilis species group. InThe genetics and biology of Drosophila, vol. 3b (ed. M. Ashburner, H. L. Carson and J. N. Thompson Jr), pp. 227–295. Academic Press, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. T. Tanuja, N. B. Ramachandra or H. A. Ranganath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanuja, M.T., Ramachandra, N.B. & Ranganath, H.A. Evolution of a recent neo-Y sex chromosome in a laboratory population ofDrosophila . J Genet 78, 81–85 (1999). https://doi.org/10.1007/BF02924559

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02924559

Keywords

Navigation