Skip to main content
Log in

Molecular organisation of the plant genome: Its relation to structure, recombination and evolution of chromosomes

  • Review
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Large scale changes in nuclear DNA amount accompany the evolution of species of higher plants. Much of the nuclear DNA accrued during the evolution of species does not encode genetic information and is selectively neutral. Nonetheless, the pattern of distribution of the excess DNA within and between chromosome complements suggests that there are rigid constraints underlying evolutionary changes in genome organisation.

A five-fold increase in the amount of nuclear DNA has occurred in the evolution ofLathyrus species. Not withstanding this massive DNA variation, species show consistently similar patterns in base sequence proliferation, divergence and DNA distribution within and between chromosome complements. Within chromosome complements, the excess DNA is distributed evenly in all chromosomes irrespective of the large differences in chromosome size and, between complements, DNA distribution is discontinuous; species cluster into DNA groups with remarkably regular intervals. Similar constraints govern the frequency and distribution of chiasmata in the chromosome complements. Between species chiasma frequency and nuclear DNA amounts are not correlated but within complements it is positively correlated with the amount of DNA contained in each chromosome.

It is shown that constraints upon evolutionary changes in genome organisation could restrict or predetermine the outcome in chromosome evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett M. D. 1983 The spatial distribution of chromosomes. InKew chromosome conference (eds) M. D. Bennett and P. E. Brandham, vol. 2, pp. 71–79

  • Brown D. D., Wensink P. C. and Jordan E. 1971 Purification and some characteristics of 5S DNA fromXenopus laevis.Proc. Natl. Acad. Sci. USA 68: 3175–3179

    Article  PubMed  CAS  Google Scholar 

  • Calos M. P. and Miller J. H. 1980 Transposable elements.Cell 20: 575–595

    Article  Google Scholar 

  • Cuellar R. E., Ford G. A., Briggs W. R. and Thompson W. F. 1978 Application of higher derivative techniques to analysis of high resolution denaturation profile of reassociated repeated DNA.Proc. Natl. Acad. Sci. USA 75: 6026–6030

    Article  PubMed  CAS  Google Scholar 

  • Dennis E. S., Gerlach W. L. and Peacock W. J. 1980 Identical polypyrimidine-polyuridine satellite DNA’s in wheat and barley.Heredity 44: 345–366

    Article  Google Scholar 

  • Doolittle W. F. and Sapienza C. 1980 Selfish genes, the phenotype paradigm and genome evolution.Nature (London) 284: 601–603

    Article  CAS  Google Scholar 

  • Dritten R. J. and Rhone D. E. 1968 Repeated sequences in DNA.Science 161: 529–540

    Article  Google Scholar 

  • Goodspeed T. H. 1954 The genusNicotiana. Chronica Botanica (Waltham, Massachusetts)

    Google Scholar 

  • Hutchinson J., Narayan R. K. J. and Rees H. 1980 Constraints upon the composition of supplementary DNA,Chromosoma 78: 137–145

    Article  PubMed  CAS  Google Scholar 

  • Jelenik W. R. and Haynes S. R. 1982 The mammalian Alu family of dispersed repeats.Cold Spring Harbor Symp. Quant. Biol. 47: 1123–1130

    Google Scholar 

  • Kelley T. J. and Smith H. O. 1970 A restriction enzyme fromHemophilus influenzae.J. Mol. Biol. 51: 393–409

    Article  Google Scholar 

  • Kuriyan N. P. and Narayan R. K. J. 1988 The distribution and divergence during evolution of repetitive DNA sequences inLathyrus species.J. Mol. Evol. 27: 303–310

    Article  CAS  Google Scholar 

  • Lewin B. 1974Gene expression-2 (London: John Wiley and Sons)

    Google Scholar 

  • Martin P. G. and Shanks R. 1966 DoesVicia faba have multistranded chromosomes?Nature (London) 211: 650–651

    Article  Google Scholar 

  • Maynard Smith J., Burian R., Kauffman S., Iberch P., Campbell J., Goodwin B., Lande R., Raup D., and Wolpert L. 1985 Developmenuntal constraints and evolution.Q. Rev. Biol. 60: 265–287

    Article  Google Scholar 

  • McClintock B. 1965 The control of gene action in maize.Brookhaven Symp. Biol. 18: 162–185

    Google Scholar 

  • McGregor H. C. and Sessons S. K. 1986 The biological significance of variation in satellite DNA and heterochromatin in newts of the genusTriturus: an evolutionary perspective.Philos. Trans. R. Soc. London B312:243–260

    Google Scholar 

  • Muller H. J. 1967 inHeritage from Mendel (eds) R. A. Brink (Madison: University of Wisconsin Press) pp. 419–447

    Google Scholar 

  • Narayan R. K. J. 1982 Discontinuous DNA variation in the evolution of plant species. The genusLathyrus.Evolution 36: 877–891

    Article  Google Scholar 

  • Narayan R. K. J. 1985 Discontinuous DNA variation in the evolution of plant species.J. Genet. 64: 101–109

    Google Scholar 

  • Narayan R. K. J. 1987 Nuclear DNA changes, genome differentiation and evolution inNicotiana.Plant Syst. Evol. 157: 161–180

    Article  CAS  Google Scholar 

  • Narayan R. K. J. 1988 Constraints upon the organisation and evolution of chromosomes inAllium.Theor. Appl. Genet. 75: 319–329

    Article  Google Scholar 

  • Narayan R. K. J. and Durrant A. 1983 DNA distribution in chromosomesof Lathyrus species.Genetica 61: 47–53

    Article  CAS  Google Scholar 

  • Narayan R. K. J. and Mclntyre F. K. 1989 Chromosomal DNA variation, genomic constraints and recombination inLathyrus.Genetica 79: 45–52

    Article  CAS  Google Scholar 

  • Narayan R. K. J. and Rees H. 1976 Nuclear DNA variation inLathyrus.Chromosoma 54: 141–154

    Article  CAS  Google Scholar 

  • Nei M. 1975 Molecular population genetics and evolution: Research Monograph.Frontiers of Biology 40. (Amsterdam: North Holland)

    Google Scholar 

  • Raina B. N. and Rees H. 1983 DNA variation within and between chromosome complements ofVicia species.Heredity 51: 335–346

    Article  Google Scholar 

  • Rothfels K., Sexsmith E., Heimberger M. and Krause M. O. 1966 Chromosome size and DNA content of species ofAnemone. L. and related genera.Chromosoma 20: 54–74

    Article  Google Scholar 

  • Thompson W. F. and Murray M. G. 1980 Sequence organisation in pea and mung bean DNA and a model for genome evolution. InPlant genome (eds) D. R. Davies and D. A. Hopwood (London: The John Innes Charity) pp. 51–45

    Google Scholar 

  • Varley J. M., Mcgregor H. C., Nardi I., Andrews C. and Erba H. P. 1980 Cytological evidence of transcription of highly repetitive DNA sequences during the lampbrush stage inTriturus cristatus carnifex.Chromosoma 80: 289–307

    Article  PubMed  CAS  Google Scholar 

  • Vosa C. G. 1974 The basic karyotype of rye (Secale cereale) analysed with Giemsa and fluoresence methods.Heredity 33: 403–408

    Article  Google Scholar 

  • Waldeyer W. 1988 Uber Karyokinese und ihre Bezeihung zu den Befruchtungsvorgangen.Arch. Mikr. Anat. 32: 1

    Article  Google Scholar 

  • Watson J. D. 1965Molecular biology of the gene (New York: Benjamin)

    Google Scholar 

  • Welleur P. K. and Dawid I. B. 1974 Secondary structure maps of ribosomal RNA and DNA.J. Mol. Biol. 89: 379–395

    Article  Google Scholar 

  • Winkler H. 1920Vererbung und ursache der parthenogenese im flanzen und Tierreich (Germany Fischer/Jena)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narayan, R.K.J. Molecular organisation of the plant genome: Its relation to structure, recombination and evolution of chromosomes. J. Genet. 70, 43–61 (1991). https://doi.org/10.1007/BF02923577

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02923577

Keywords

Navigation