Skip to main content
Log in

The design of a membrane-based integrated ethanol production process

Scientific Note

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Conclution

By applying pervaporation and microfiltration to an ethanol fermentation, the substrate consumption was greater by a factor of two and the productivity by a factor of 15 than that in a conventional continuous culture. The fermentation data can be described adequately by a kinetic model. The membrane techniques are relatively easy to operate, and fouling occurs in microfiltration modules, but not in pervaporation modules.

Simulations show that the fermentation performance can further be improved and that the process configuration can be optimized to reduce the membrane area. On a large scale a membrane area as high as 2000–3000 m2 may be needed, which may give rise to logistic problems.

With the presently available equipment, commercial ethanol production with membrane-based integrated systems is not economically feasible. The flux of existing pervaporation membranes may be acceptable; however, the selectivity is still too low to make pervaporation competitive with other separation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deger, H. M., Dorsemagen, B., Hofer, N., Klein, M., and Wöhner, G. (1987),Chem.-Ing. Tech. 59, 865.

    Article  CAS  Google Scholar 

  2. Nagashima, M., Azuma, M., Noguchi, S., Inuzaka, K., and Samejima, H. (1984),Biotechnol. Bioeng. 26, 992.

    Article  CAS  Google Scholar 

  3. Tegtmeier, U. (1988),Einsatz von Microfiltrationsmembranen zur Zellrückhaltung in einem Kontinuierlichen Fermentationsprozess, Report GVC VDI-meeting, Heidelberg, FRG.

  4. Alfa Laval AB, Brochures on the Biostill Process (Tumba, Sweden).

  5. Cysewski, G. R. and Wilke, C. R. (1977),Biotechnol. Bioeng. 19, 1125.

    Article  CAS  Google Scholar 

  6. Daugulis, A. J., Swaine, D. E., Kollerup, F., and Groom, C. A. (1987),Biotechnol. Lett. 9, 425.

    Article  CAS  Google Scholar 

  7. Ruiz, F., Gomis, V., and R. F. Botella (1987),Ind. Eng. Chem. 26, 696.

    Article  CAS  Google Scholar 

  8. Bakish, R., ed. (1988),Proc. 3rd Int. Conf. on Pervaporation Processes in the Chem. Ind. (Bakish Materials Corporation, Englewood, NJ).

    Google Scholar 

  9. Gudernatsch, W., Kimmerle, K., Stroh, N., and Chmiel, U. (1988),J. Membr, Sci. 36, 331.

    Article  CAS  Google Scholar 

  10. Ishihara, K. and Matsui, K. (1987),J. Appl. Polym. Sci. 34, 437.

    Article  CAS  Google Scholar 

  11. Te Hennepe, H. J. C, Bargeman, D., Mulder, M. H. V., and Smolders, C. A. (1987),J. Membr. Sci. 35, 39.

    Article  Google Scholar 

  12. Roels, J. A. (1983),Energetics and Kinetics in Biotechnology (Elsevier Biomedical, Amsterdam).

    Google Scholar 

  13. Maiorella, B. L., Blanch, H. W., and Wilke, C. R. (1984),Biotechnol. Bioeng. 26, 1003.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groot, W.J., Van Der Lans, R.G.J.M. & Luyben, K.C.A.M. The design of a membrane-based integrated ethanol production process. Appl Biochem Biotechnol 28, 539–547 (1991). https://doi.org/10.1007/BF02922632

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02922632

Index Entries

Navigation