Skip to main content
Log in

Enzymatic hydrolysis of starch in a fixed-bed pulsed-flow reactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

One of the most important problems in the design and operation of fixed-bed biological reactors is the control of the process rate by mass-transfer limitations. In order to overcome this problem, a new technology, based on the use of pulsed reactors, was developed. A new type of pulsing device, giving a see-saw-type of disturbance, was assayed. To quantify the possible improvement obtained, we have chosen as an example the hydrolysis of concentrated starch solutions by glucoamylase (fromAspergillus niger) immobilized on chitin slabs. The reactor has an internal diameter of 50 mm and a bed height of 200 mm. Temperature was controlled at 25°C, and the working hydraulic retention times were from 0.29 to 1.8 h. The results revealed that pulsation helps to lessen the diffusional difficulties, since the maximum reaction velocity increased 10%. Additional improvements, up to 20% in some cases, are achieved by recycling a part of partially converted feed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

τ:

mean residence time h

So, S:

initial and final substrate concentration g/L

r=V:

hydrolysis rate g/L.min

Vmax :

maximum reaction rate g/L-min

K s :

Michaelis constant g/L

R :

recirculation rate = return flow/out flow

t :

time h

θ:

normalized time

D :

axial dispersion coefficient m2/s

N :

number of tanks in series

C θ :

normalized tracer response to a pulse input

µ a :

apparent viscosity kg/m.s

- dv/dr :

velocity gradient s-1

References

  1. Srinikethan, G., Prabhakar, A., and Varma, Y. B. G. (1987),Bioprocess Eng. 2, 161–168.

    Article  Google Scholar 

  2. Finnigan, S. M. and Howell, J. A. (1989),Chem. Eng. Res. Des. 67, 278–282.

    CAS  Google Scholar 

  3. Hwang, K.-Y. and Brauer, H. (1987),Biotech Forum 4, 3, 118–130.

    CAS  Google Scholar 

  4. Etzold, M. and Stadlbauer, E. A. (1990),Bioprocess Eng. 5, 7–12.

    Article  CAS  Google Scholar 

  5. Hamamci, H. and Ryu, D. D. Y. (1988),Appl. Microbiol. Biotechnol. 28, 515–519.

    Article  CAS  Google Scholar 

  6. Ghommidh, C, Navarro, J. M, and Durand, G. (1982),Biotechnol. Bioeng. 24, 605–617.

    Article  CAS  Google Scholar 

  7. Baird, M. H., Vijayan, S., Rama Rao, N. V., and Rohatgi, A. (1989),Can. J. Chem. Eng. 67, 787–800.

    Article  CAS  Google Scholar 

  8. Murthy, V. V. P. S., Ramachandran, K. B., and Ghose, T. K. (1989),Process Biochem. 4, 77–83.

    Google Scholar 

  9. Navarro, J. M. and Goma, G. (1980),Nouveau dispositif de Mise en Oeuvre des Micro-Organismes. Brevet d’invention n°78 28572, Institut National de la Propriété Industrielle. Paris.

    Google Scholar 

  10. Bouzas, S., Casares, J. J., and Lema, J. M. (1988), Ingeniería Química234, 209–214.

    Google Scholar 

  11. Bouzas, S., Casares, J. J., and Lema, J. M. (1988), Ingenieria Quimica237, 115–120.

    Google Scholar 

  12. Bernfeld, D. P. (1951),Adv. Enzymol. 12, 379–427.

    CAS  Google Scholar 

  13. Bunday, B. D. (1984),Basic Optimization Methods (E. Arnold Pu, London).

  14. Stanley, W. L., Watters, G. G., Kelley, S. H., and Olson, A. C. (1978),Biotechnol. Bioeng. 20, 135–140.

    Article  CAS  Google Scholar 

  15. Synowiecki, J., Sikorski, E., Naczk, M., and Piotrzkowska, H. (1982),Biotechnol. Bioeng. 24, 1871–1876.

    Article  CAS  Google Scholar 

  16. Miranda, M., Murado, M. A., Sanromán, A., and Lema, J. M.Enzyme Microb. Technol. (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanromán, A., Chamy, R., Núñez, M.J. et al. Enzymatic hydrolysis of starch in a fixed-bed pulsed-flow reactor. Appl Biochem Biotechnol 28, 527–538 (1991). https://doi.org/10.1007/BF02922631

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02922631

Index Entries

Navigation