Advertisement

Perturbation of frame sequences in shift-invariant spaces

  • O. ChristensenEmail author
  • H. O. Kim
  • R. Y. Kim
  • J. K. Lim
Article

Abstract

We prove a new perturbation criteria for frame sequences, which generalizes previous results and is easier to apply. In the special case of frames infinitely generated shift-invariant subspaces of L2(ℝd) the condition can be formulated in terms of the norm of a finite Gram matrix and a corresponding rank condition.

Math Subject Classifications

42C15 

Key Words and Phrases

Frames shift-invariant spaces perturbation 

References

  1. [1]
    Aldroubi, A. Oblique projections in atomic spaces,Proc. Amer. Math. Soc. 124, 2051–2060, (1996).CrossRefMathSciNetzbMATHGoogle Scholar
  2. [2]
    Bownik, M. The structure of shift-invariant subspaces ofL 2(ℝn),J. Funct. Anal. 177, 283–309, (2000).CrossRefMathSciNetGoogle Scholar
  3. [3]
    Bownik, M. and Garrigos, G. Biorthogonal wavelets, MRA’s and shift-invariant spaces,Studia Math. 160(3), 231–248, (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Christensen, O.An Introduction to Frames and Riesz Bases, Birkhäuser, (2003).Google Scholar
  5. [5]
    Christensen, O. A Paley-Wiener theorem for frames,Proc. Amer. Math. Soc. 123, 2199–2202, (1995).CrossRefMathSciNetzbMATHGoogle Scholar
  6. [6]
    Christensen, O. Operators with closed range and perturbation of frames for a subspace,Canad. Math. Bull. 42(1), 37–45, (1999).MathSciNetzbMATHGoogle Scholar
  7. [7]
    Christensen, O., deFlicht, C., and Lennard, C. Perturbation of frames for a subspace of a Hilbert space,Rocky Mountain J. Math. 30(4), 1237–1249, (2000).CrossRefMathSciNetzbMATHGoogle Scholar
  8. [8]
    Christensen, O. and Eldar, Y. Oblique dual frames and shift-invariant spaces,Appl. Comp. Harm. Anal. 17, 48–68, (2004).CrossRefMathSciNetzbMATHGoogle Scholar
  9. [9]
    Favier, S.J. and Zalik, R.A. On the stability of frames and Riesz bases,Appl. Comp. Harm. Anal. 2, 160–173, (1995).CrossRefMathSciNetzbMATHGoogle Scholar
  10. [10]
    Kim, H. O., Kim, R. Y., and Lim, J. K. The infimum cosine angle between two finitely generated shift-invariant spaces and its applications, to appear inAppl. Comp. Harm. Anal. Google Scholar
  11. [11]
    Kim, H. O., Kim, R. Y., and Lim, J. K. Characterization of the closedness of the sum of two shift-invariant spaces, preprint, (2005).Google Scholar
  12. [12]
    Ron, A. and Shen, Z. Frames and stable bases for shift-invariant subspaces ofL 2(ℝd),Canad. J. Math. 47, 1051–1094, (1995).MathSciNetzbMATHGoogle Scholar
  13. [13]
    Sun, W. and Zhou, X. On the stability of Gabor frames,Adv. Appl. Math. 26, 181–191, (2001).CrossRefMathSciNetzbMATHGoogle Scholar
  14. [14]
    Sun, W. and Zhou, X. Irregular wavelet/Gabor frames,Appl. Comp. Harm. Anal. 13(1), 63–76, (2002).CrossRefMathSciNetzbMATHGoogle Scholar
  15. [15]
    Unser, M. and Aldroubi, A. A general sampling theory for non-ideal acquisition devices,IEEE Trans. Signal Process.42, 2915–2925, (1994).CrossRefGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2005

Authors and Affiliations

  • O. Christensen
    • 1
    Email author
  • H. O. Kim
    • 2
  • R. Y. Kim
    • 2
  • J. K. Lim
    • 3
  1. 1.Department of MathematicsTechnical University of DenmarkLyngbyDenmark
  2. 2.Division of Applied MathematicsKAISTDaejeonRepublic of Korea
  3. 3.Department of Computational Mathematics and InformaticsHankyong National UniversityAnsung-City, Kyonggi-DoRepublic of Korea

Personalised recommendations