Skip to main content
Log in

Compact Heisenberg manifolds as CR manifolds

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let M be the quotient of the Heisenberg group by a discrete co-compact subgroup, with the natural strongly pseudoconvex CR structure. We identify the eigenvalues and eigenforms of the Kohn Laplacians on M and show how to realize M as the boundary of a bounded domain in a line bundle over an Abelian variety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslander, L.Lecture Notes on Nil-Theta Functions, CBMS Regional Conference Series no. 34, American Mathematical Society, Providence, RI, (1977).

    MATH  Google Scholar 

  2. Auslander, L. and Brezin, J. Translation-invariant subspaces in L2 of a compact nilmanifold I,Invent. Math.,20, 1–14, (1973).

    Article  MathSciNet  MATH  Google Scholar 

  3. Auslander, L. and Tolimieri, R.Abelian Harmonic Analysis, Theta Functions, and Function Algebras on a Nilmanifold, Lecture Notes on Math., no. 436, Springer-Verlag, New York, (1975).

    MATH  Google Scholar 

  4. Brezin, J. Harmonic analysis on nilmanifolds,Trans. Am. Math. Soc.,150, 611–618, (1970).

    Article  MathSciNet  MATH  Google Scholar 

  5. Folland, G.B.Harmonic Analysis in Phase Space, Princeton University Press, Princeton, NJ, (1989).

    MATH  Google Scholar 

  6. Folland, G.B. and Stein, E.M. Estimates for the\(\bar \partial _b \) complex and analysis on the Heisenberg group,Comm. Pure Appl. Math.,27, 429–522, (1974).

    Article  MathSciNet  MATH  Google Scholar 

  7. Grauen, H. Über Modifikationen und exzeptionelle analytische Mengen,Math. Ann.,146, 331–368, (1962).

    Article  MathSciNet  Google Scholar 

  8. Griffiths, P. and Harris, J.Principles of Algebraic Geometry, John Wiley & Sons, New York, (1978).

    MATH  Google Scholar 

  9. Harvey, F.R. and Lawson, H.B. On boundaries of complex analytic varieties I.Ann. Math.,102(2), 223–290, (1975).

    Article  MathSciNet  Google Scholar 

  10. Hirzebruch, F.Topological Methods in Algebraic Geometry, 3rd ed., Springer-Verlag, New York, (1966).

    MATH  Google Scholar 

  11. Kodaira, K. and Spencer, D.C. Groups of complex line bundles over compact Kähler varieties,Proc. Nat. Acad. Sci. USA,39, 868–872, (1953).

    Article  MathSciNet  MATH  Google Scholar 

  12. Korányi, A.H p-spaces on compact nilmanifolds,Acta Sci. Math., (Szeged),34, 175–190, (1973).

    MathSciNet  MATH  Google Scholar 

  13. Mumford, D.Abelian Varieties, Oxford University Press, Oxford, (1970).

    MATH  Google Scholar 

  14. Rossi, H. Analytic spaces with compact subvarieties,Math. Ann.,146, 129–145, (1962).

    Article  MathSciNet  MATH  Google Scholar 

  15. Strichartz, R.S.L p harmonic analysis and Radon transforms on the Heisenberg group,J. Funct. Anal.,96, 350–406, (1991).

    Article  MathSciNet  MATH  Google Scholar 

  16. Tolimieri, R. Analysis on the Heisenberg manifold,Trans. Am. Math. Soc.,228, 329–343, (1977).

    Article  MathSciNet  MATH  Google Scholar 

  17. Tolimieri, R. The theta transform and the Heisenberg group,J. Funct. Anal.,24, 353–363, (1977).

    Article  MathSciNet  MATH  Google Scholar 

  18. Tolimieri, R. Heisenberg manifolds and theta functions,Trans. Am. Math. Soc.,239, 293–319, (1978).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Folland.

Additional information

Communicated by Steven Krantz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folland, G.B. Compact Heisenberg manifolds as CR manifolds. J Geom Anal 14, 521–532 (2004). https://doi.org/10.1007/BF02922102

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02922102

Math Subject Classifications

Key Words and Phrases

Navigation