Abstract
Let M be the quotient of the Heisenberg group by a discrete co-compact subgroup, with the natural strongly pseudoconvex CR structure. We identify the eigenvalues and eigenforms of the Kohn Laplacians on M and show how to realize M as the boundary of a bounded domain in a line bundle over an Abelian variety.
Similar content being viewed by others
References
Auslander, L.Lecture Notes on Nil-Theta Functions, CBMS Regional Conference Series no. 34, American Mathematical Society, Providence, RI, (1977).
Auslander, L. and Brezin, J. Translation-invariant subspaces in L2 of a compact nilmanifold I,Invent. Math.,20, 1–14, (1973).
Auslander, L. and Tolimieri, R.Abelian Harmonic Analysis, Theta Functions, and Function Algebras on a Nilmanifold, Lecture Notes on Math., no. 436, Springer-Verlag, New York, (1975).
Brezin, J. Harmonic analysis on nilmanifolds,Trans. Am. Math. Soc.,150, 611–618, (1970).
Folland, G.B.Harmonic Analysis in Phase Space, Princeton University Press, Princeton, NJ, (1989).
Folland, G.B. and Stein, E.M. Estimates for the\(\bar \partial _b \) complex and analysis on the Heisenberg group,Comm. Pure Appl. Math.,27, 429–522, (1974).
Grauen, H. Über Modifikationen und exzeptionelle analytische Mengen,Math. Ann.,146, 331–368, (1962).
Griffiths, P. and Harris, J.Principles of Algebraic Geometry, John Wiley & Sons, New York, (1978).
Harvey, F.R. and Lawson, H.B. On boundaries of complex analytic varieties I.Ann. Math.,102(2), 223–290, (1975).
Hirzebruch, F.Topological Methods in Algebraic Geometry, 3rd ed., Springer-Verlag, New York, (1966).
Kodaira, K. and Spencer, D.C. Groups of complex line bundles over compact Kähler varieties,Proc. Nat. Acad. Sci. USA,39, 868–872, (1953).
Korányi, A.H p-spaces on compact nilmanifolds,Acta Sci. Math., (Szeged),34, 175–190, (1973).
Mumford, D.Abelian Varieties, Oxford University Press, Oxford, (1970).
Rossi, H. Analytic spaces with compact subvarieties,Math. Ann.,146, 129–145, (1962).
Strichartz, R.S.L p harmonic analysis and Radon transforms on the Heisenberg group,J. Funct. Anal.,96, 350–406, (1991).
Tolimieri, R. Analysis on the Heisenberg manifold,Trans. Am. Math. Soc.,228, 329–343, (1977).
Tolimieri, R. The theta transform and the Heisenberg group,J. Funct. Anal.,24, 353–363, (1977).
Tolimieri, R. Heisenberg manifolds and theta functions,Trans. Am. Math. Soc.,239, 293–319, (1978).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Steven Krantz
Rights and permissions
About this article
Cite this article
Folland, G.B. Compact Heisenberg manifolds as CR manifolds. J Geom Anal 14, 521–532 (2004). https://doi.org/10.1007/BF02922102
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02922102