Skip to main content
Log in

Stable bundles and the first eigenvalue of the Laplacian

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this article we study the first eigenvalue of the Laplacian on a compact manifold using stable bundles and balanced bases. Our main result is the following: Let M be a compact Kähler manifold of complex dimension n and E a holomorphic vector bundle of rank r over M. If E is globally generated and its Gieseker point Te is stable, then for any Kähler metric g on M\(\lambda _1 (M,g) \leqslant \frac{{4\pi h^0 (E)}}{{r(h^0 (E) - r)}} \cdot \frac{{\left\langle {C_1 (E) \cup [\omega ]^{n - 1} ,[M]} \right\rangle }}{{(n - 1)!vol(M,[\omega ])}}\) where ω = ωg is the Kähler form associated to g.

By this method we obtain, for example, a sharp upper bound for λ1 of Kähler metrics on complex Grassmannians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arezzo, C. and Loi, A. Moment maps, scalar curvature and quantization of Kähler manifolds,Comm. Math. Phys. 243, 543–559, (2004).

    Article  MathSciNet  Google Scholar 

  2. Birkes, D. Orbits of linear algebraic groups,Ann. of Math. 93(2), 459–475, (1971).

    Article  MathSciNet  Google Scholar 

  3. Bourguignon, J. P., Li, P., and Yau, S. T. Upper bound for the first eigenvalue of algebraic submanifolds,Comment. Math. Helv. 69, 199–207, (1994).

    Article  MathSciNet  MATH  Google Scholar 

  4. Colbois, B. and Dodziuk, J. Riemannian metrics with large λ1,Proc. Amer. Math. Soc. 122, 905–906, (1994).

    Article  MathSciNet  MATH  Google Scholar 

  5. Dolgachev, I.Lectures on Invariant Theory, Cambridge University Press, Cambridge, (2003).

    MATH  Google Scholar 

  6. Donaldson, S. Scalar curvature and projective embeddings,J. Differential Geom. 59, 479–522, (2001).

    MathSciNet  MATH  Google Scholar 

  7. ElSoufi, A. and Ilias, S. Riemannian manifolds admitting isometric immersions by their first eigenfunctions,Pacific J. Math. 195(1), 91–99, (2000).

    Article  MathSciNet  Google Scholar 

  8. Friedman, R.Algebraic Surfaces and Holomorphic Vector Bundles, Universitext. Springer-Verlag, New York, (1998).

    MATH  Google Scholar 

  9. Futaki, A.Kähler-Einstein Metrics and Integral Invariants, Springer-Verlag, Berlin, (1988).

    MATH  Google Scholar 

  10. Geĺfand, I. M., Kapranov, M. M., and Zelevinsky, A. V.Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Boston, (1994).

    MATH  Google Scholar 

  11. Gieseker, D. On the moduli of vector bundles on an algebraic surface,Ann. of Math. 106(1), 45–60, (1977).

    Article  MathSciNet  Google Scholar 

  12. Griffiths, P. and Harris, J.Principles of Algebraic Geometry, John Wiley & Sons, New York, (1978).

    MATH  Google Scholar 

  13. Hersch, J. Quatre propriétés isopérimétriques de membranes sphérique homogénes,C. R. Acad. Paris 270, 1645–1648, (1970).

    MathSciNet  MATH  Google Scholar 

  14. Luo, H. Geometric criterion for Mumford-Gieseker stability of polarized manifolds,J. Differential Geom. 49, 577–599, (1998).

    MathSciNet  MATH  Google Scholar 

  15. Mukai, S.An Introduction to Invariants and Moduli, Cambridge University Press, Cambridge, (2003).

    MATH  Google Scholar 

  16. Mumford, D., Fogarty, J., and Kirwan, F. Geometric invariant theory, vol. 34 ofErgebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, 3rd ed., (1994).

    Google Scholar 

  17. Nadirashvili, N. Berger’s isoperimetric problem and minimal immersions of surfaces,Geom. Funct. Anal. 6(5), 877–898, (1996).

    Article  MathSciNet  MATH  Google Scholar 

  18. Teixidor i Bigas, M. Brill-Noether theory for stable vector bundles,Duke Math. J. 62(2), 385–400, (1991).

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, X. Canonical metrics and stability of vector bundles over a projective manifold, Ph. D. Thesis, (2002).

  20. Wang, X. Balance point and stability of vector bundles over a projective manifold,Math. Res. Lett. 9, 393–411, (2002).

    MathSciNet  MATH  Google Scholar 

  21. Yang, P. C. and Yau, S. T. Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds,Ann. Scuola Norm. Sup. Pisa Cl. Sci. 7(1), 55–63, (1980).

    MathSciNet  MATH  Google Scholar 

  22. Yau, S.-T. An application of eigenvalue estimate to algebraic curves defined by congruence subgroups,Math. Res. Lett. 3(2), 167–172, (1996).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Arezzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arezzo, C., Ghigi, A. & Loi, A. Stable bundles and the first eigenvalue of the Laplacian. J Geom Anal 17, 375–386 (2007). https://doi.org/10.1007/BF02922088

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02922088

Math Subject Classifications

Key Words and Phrases

Navigation