Skip to main content
Log in

Inversion formulas for the short-time Fourier transform

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The inversion formula for the short-time Fourier transform is usually considered in the weak sense, or only for specific combinations of window functions and function spaces such as L2. In the present article the so-called θ-summability (with a function parameter θ) is considered which induces norm convergence for a large class of function spaces. Under some conditions on θ we prove that the summation of the short-time Fourier transform of ƒ converges to ƒ in Wiener amalgam norms, hence also in the Lp sense for Lp functions, and pointwise almost everywhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benedetto, J. Gabor representation and wavelets, inCommutative Harmonic Analysis, Colella, D., Ed.,Contemp. Math. 91, 9–27, American Mathematical Society, Providence, (1989).

    Google Scholar 

  2. Butzer, P. L. and Nessel, R.J. Fourier Analysis and Approximation, Birkhäuser, Verlag, Basel, (1971).

    Google Scholar 

  3. Carleson, L. On convergence and growth of partial sums of Fourier series,Acta Math. 116, 135–157, (1966).

    Article  MathSciNet  MATH  Google Scholar 

  4. Dobler, T. Wiener amalgam spaces on locally compact groups, Master’s thesis, University of Vienna, Austria, (1989).

    Google Scholar 

  5. Fefferman, C. On the convergence of multiple Fourier series,Bull. Amer. Math. Soc. 77, 744–745, (1971).

    Article  MathSciNet  MATH  Google Scholar 

  6. Feichtinger, H. G. Banach convolution algebras of Wiener type, inProc. Conf. on Functions, Series, Operators, Budapest 1980, ofColloq. Math. Soc. János Bolyai,35, 509–524. North-Holland, Amsterdam, (1983).

    Google Scholar 

  7. Feichtinger, H. G. An elementary approach to Wiener’s third Tauberian theorem for the Euclideann-space, inSymp. Math. XXIX, of Analisa Armonica, 267–301, Cortona, (1988).

    Google Scholar 

  8. Feichtinger, H. G. and Weisz, F. Gabor analysis on Wiener amalgams,Sampl. Theory Signal Image Process. to appear, (2006).

  9. Feichtinger, H. G. and Weisz, F. The Segal algebra S0(ℝd) and norm summability of Fourier series and Fourier transforms,Monatshefte Math. to appear, (2006).

  10. Feichtinger, H. G. and Weisz, F. Wiener amalgams and pointwise summability of Fourier transforms and Fourier series,Math. Proc. Camb. Phil. Soc. 140, to appear, (2006).

  11. Garcia-Cuerva, J. and Herrero, M.-J. L. A theory of Hardy spaces associated to the Herz spaces,Proc. London Math. Soc. 69, 605–628, (1994).

    Article  MathSciNet  MATH  Google Scholar 

  12. Grafakos, L.Classical and Modern Fourier Analysis, Pearson Education, NJ, (2004).

    MATH  Google Scholar 

  13. Gröchenig, K.Foundations of Time-Frequency Analysis, Birkhäuser, Boston, (2001).

    MATH  Google Scholar 

  14. Gröchenig, K. and Heil, C. Gabor meets Littlewood-Paley: Gabor expansions in Lp(Rd),Studia Math. 146, 15–33, (2001).

    Article  MathSciNet  MATH  Google Scholar 

  15. Gröchenig, K., Heil, C., and Okoudjou, K. Gabor analysis in weighted amalgam spaces,Sampl. Theory Signal Image Process.1, 225–259, (2002).

    MathSciNet  MATH  Google Scholar 

  16. Heil, C. An introduction to weighted Wiener amalgams, inWavelets and their Applications, Krishna, M., Radha, R., and Thangavelu, S., Eds., 183–216, Allied Publishers Private Limited, (2003).

  17. Heil, C. E. and Walnut, D. F. Continuous and discrete wavelet transforms,SIAM Rev. 31, 628–666, (1989).

    Article  MathSciNet  MATH  Google Scholar 

  18. Herz, C. Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms,J. Math. Mech. 18, 283–324, (1968).

    MathSciNet  MATH  Google Scholar 

  19. Hunt, R. A. On the convergence of Fourier series, inOrthogonal Expansions and their Continuous Analogues, Proc. Conf. Edwardsville, Ill, 1967, 235–255. Illinois University Press, Carbondale, (1968).

    Google Scholar 

  20. Stein, E. M. and Weiss, G.Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, NJ, (1971).

    MATH  Google Scholar 

  21. Trigub, R. M. and Belinsky, E. S.Fourier Analysis and Approximation of Functions, Kluwer Academic Publishers, Dordrecht, Boston, London, (2004).

    MATH  Google Scholar 

  22. Weisz, F. The maximal Fejér operator of multi-dimensional Fourier transforms,East J. Appr. 4, 491–503, (1998).

    MathSciNet  MATH  Google Scholar 

  23. Weisz, F.Summability of Multi-Dimensional Fourier Series and Hardy Spaces, Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, Boston, London, (2002).

    Google Scholar 

  24. Zygmund, A.Trigonometric Series, Cambridge Press, London, 3th ed. (2002).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Guido Weiss

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feichtinger, H.G., Weisz, F. Inversion formulas for the short-time Fourier transform. J Geom Anal 16, 507–521 (2006). https://doi.org/10.1007/BF02922064

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02922064

Math Subject Classifications

Key Words and Phrases

Navigation