Skip to main content
Log in

Plurisubharmonic functions on hypercomplex manifolds and HKT-geometry

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

A hypercomplex manifold is a manifold equipped with a triple of complex structures I, J, K satisfying the quaternionic relations. We define a quaternionic analogue of plurisubharmonic functions on hypercomplex manifolds, and interpret these functions geometrically as potentials of HKT (hyperkähler with torsion) metrics. We prove a quaternionic analogue of A. D. Aleksandrov and ChernLevine-Nirenberg theorems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleksandrov, A. D. Dirichlet’s problem for the equation Det ¦zij¦ =ϕ(z1,..., z n,z, x1,..., xn), I, (Russian)Vestnik Leningrad. Univ. Ser. Mat. Meh. Astr. 13(1), 5–24, (1958).

    MathSciNet  Google Scholar 

  2. Alesker, S. Noncommutative linear algebra and plurisubharmonic functions of quaternionic variables,Bull. Sci. Math. 127(1), 1–35, also: math.CV/0104209, (2003).

    Article  MathSciNet  MATH  Google Scholar 

  3. Alesker, S. Quaternionic Monge-Ampère equations,J. Geom. Anal. 13(2), 205–238, also: math.CV/0208005, (2003).

    MathSciNet  Google Scholar 

  4. Alesker, S. Valuations on convex sets, noncommutative determinants, and pluripotential theory,Adv. Math. 195, 561–595, also: math.MG/0401219, (2005).

    Article  MathSciNet  MATH  Google Scholar 

  5. Aslaksen, H. Quaternionic determinants,Math. Intelligencer 18(3), 57–65, (1996).

    Article  MathSciNet  MATH  Google Scholar 

  6. Baston, R. J. Quaternionic complexes,J. Geom. Phys. 8(1–4), 29–52, (1992).

    Article  MathSciNet  MATH  Google Scholar 

  7. Banos, B. and Swann, A. Potentials for hyper-Kähler metrics with torsion,Classical Quantum Gravity 21(13), 3127–3135,(2004).

    Article  MathSciNet  MATH  Google Scholar 

  8. Boyer, C. P. A note on hyper-Hermitian four-manifolds,Proc. Amer. Math. Soc. 102(1), 157–164, (1988).

    Article  MathSciNet  MATH  Google Scholar 

  9. Bryant, R. Classical, exceptional, and exotic holonomies: A status report, inActes de la Table Ronde de Géométrie Différentielle, (Luminy, 1992), Sémin. Congr.1, 93–165, Soc. Math., France, Paris, (1996).

  10. Chern, S.-S., Levine, H. I., and Nirenberg, L. Intrinsic norms on a complex manifold,Global Analysis, (Articles in Honor of K. Kodaira) 119–139 Univ. Tokyo Press, Tokyo, (1969).

    Google Scholar 

  11. Grantcharov, G. and Poon, Y. S. Geometry of hyper-Kähler connections with torsion,Comm. Math. Phys. 213(1), 19–37, (2000).

    Article  MathSciNet  MATH  Google Scholar 

  12. Gelfand, I. M. and Vilenkin, N. Y.Generalized Functions, Applications of Harmonie Analysis,4, translated from the Russian by Amiel Feinstein. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, [1977], (1964).

    Google Scholar 

  13. Gelfand, I., Retakh, V., and Wilson, R. L. Quaternionic quasideterminants and determinants. Lie groups and symmetric spaces, 111–123,Amer. Math. Soc. Transl. Ser.2, pp. 210, Amer. Math. Soc., Providence, RI, (2003).

    Google Scholar 

  14. Harvey, R. Holomorphic chains and their boundaries. Several complex variables, (Proc. Sympos. Pure Math., Vol. XXX, Part 1, Williams Coll., Williamstown, MA, 1975), 309–382,Amer. Math. Soc. Providence, RI, (1977).

    Google Scholar 

  15. Henkin, G. Private communication.

  16. Howe, R. Remarks on classical invariant theory,Trans. Amer. Math. Soc. 313(2), 539–570, (1989).

    Article  MathSciNet  MATH  Google Scholar 

  17. Howe, P. S. and Papadopoulos, G. Twistor spaces for hyper-Kähler manifolds with torsion,Phys. Lett. B 379(1–4), 80–86,(1996).

    MathSciNet  Google Scholar 

  18. Lelong, P. Fonctions plurisousharmoniques et formes différentielles positives, (French), Gordon & Breach, Paris-London-New York (Distributed by Dunod éditeur, Paris), (1968).

    MATH  Google Scholar 

  19. Mamone Capria, M. and Salamon, S. M. Yang-Mills fields on quaternionic spaces,Nonlinearity 1(4), 517–530, (1988).

    Article  MathSciNet  MATH  Google Scholar 

  20. Moore, E. H. On the determinant of an hermitian matrix of quaternionic elements,Bull. Amer. Math. Soc. 28, 161–162, (1922).

    MATH  Google Scholar 

  21. Obata, M. Affine connections on manifolds with almost complex, quaternion or Hermitian structure,Japan J. Math. (N.S.) 26, 43–77, (1956).

    MathSciNet  Google Scholar 

  22. Salamon, S. M. Differential geometry of quaternionic manifolds.Annales Scientifiques de l’École Normale Supérieure Sér. 4 19(1), 31–55, (1986).

    MathSciNet  MATH  Google Scholar 

  23. Sibony, N. Quelques problemes de prolongement de courants en analyse complexe,Duke Math. J. 52, 157–197, (1985).

    Article  MathSciNet  MATH  Google Scholar 

  24. Verbitsky, M. Hyperholomorpic connections on coherent sheaves and stability, 40 pages, math.AG/0107182.

  25. Verbitsky, M. HyperKähler manifolds with torsion, supersymmetry and Hodge theory,Asian J. Math. 6(4), 679–712,(2002).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Gennadi M. Henkin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alesker, S., Verbitsky, M. Plurisubharmonic functions on hypercomplex manifolds and HKT-geometry. J Geom Anal 16, 375–399 (2006). https://doi.org/10.1007/BF02922058

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02922058

Math Subject Classifications

Key Words and Phrases

Navigation