Skip to main content
Log in

Sharp stability results for almost conformal maps in even dimensions

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let Ω, ⊂R n and n ≥ 4 be even. We show that if a sequence {uj} in W1,n/2(Ω;R n) is almost conformal in the sense that dist (∇uj,R +SO(n)) converges strongly to 0 in Ln/2 and if uj converges weakly to u in W1,n/2, then u is conformal and ∇uj → ∇u strongly in L qloc for all 1 < -q < n/2. It is known that this conclusion fails if n/2 is replaced by any smaller exponent p. We also prove the existence of a quasiconvex function f(A) that satisfies 0 ≤ f(A) ≤ C (1 + ¦A¦n/2) and vanishes exactly onR + SO(n). The proof of these results involves the Iwaniec-Martin characterization of conformal maps, the weak continuity and biting convergence of Jacobians, and the weak-L1 estimates for Hodge decompositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E. and Fusco, N. Semicontinuity problems in the calculus of variations,Arch. Rational Mech. Anal.,86, 125–145, (1984).

    Article  MathSciNet  MATH  Google Scholar 

  2. Ball, J.M. Convexity conditions and existence theorems in nonlinear elasticity,Arch. Rational Mech. Anal.,63, 337–403, (1977).

    Article  MATH  Google Scholar 

  3. Ball, J.M. Sets of gradients with no rank-one connections,J. Math. Pures Appl.,69, 241–259, (1990).

    MathSciNet  MATH  Google Scholar 

  4. Bojarski, B.V. and Iwaniec, T. Another approach to the Liouville’s theorem,Math. Nachr.,107, 253–262, (1982).

    Article  MathSciNet  MATH  Google Scholar 

  5. Ball, J.M. and James, R.D. Proposed experimental tests of a theory of fine microstructures and the two well problem,Phil. Trans. Roy. Soc. London, A,338, 389–450, (1992).

    Article  MATH  Google Scholar 

  6. Ball, J.M. and Murat, F. W1, p-Quasiconvexity and variational problems for multiple integrals,J. Funct. Anal,58, 225–253, (1984).

    Article  MathSciNet  MATH  Google Scholar 

  7. Chipot, M. and Kinderlehrer, D. Equilibrium configurations of crystals,Arch. Rational Mech. Anal.,103, 237–277, (1988).

    Article  MathSciNet  MATH  Google Scholar 

  8. Dacorogna, B.Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin, 1989.

    MATH  Google Scholar 

  9. DiPerna, R.J. Compensated compactness and general systems of conservation laws,Trans. Am. Math. Soc.,292(2), 383–420, (1985).

    Article  MathSciNet  Google Scholar 

  10. Donaldson, S.K. and Sullivan, D.P. Quasiconformal 4-manifolds,Acta Math.,163, 181–252, (1989).

    Article  MathSciNet  MATH  Google Scholar 

  11. Evans, L.C. Quasiconvexity and partial regularity in the calculus of variations,Arch. Rational Mech. Anal.,95, 227–252, (1986).

    Article  MathSciNet  MATH  Google Scholar 

  12. Fonseca, I. Variational methods for elastic crystals,Arch. Rational Mech. Anal.,97, 189–220, (1987).

    Article  MathSciNet  MATH  Google Scholar 

  13. Gilbarg, D. and Trudinger, N.S.Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, Berlin, 1984.

    Google Scholar 

  14. Iwaniec, T. p-Harmonic tensors and quasiregular mappings,Ann. Math.,136, 589–624, (1992).

    Article  MathSciNet  Google Scholar 

  15. Iwaniec, T. and Lutoborski, A. Integral estimates for null Lagrangians,Arch. Rational Mech. Anal.,125, 25–79, (1993).

    Article  MathSciNet  MATH  Google Scholar 

  16. Iwaniec, T. and Martin, G. Quasiregular mappings in even dimensions,Acta Math.,170, 29–81, (1993).

    Article  MathSciNet  MATH  Google Scholar 

  17. Iwaniec, T. and Sbordone, C. Weak minima of variational integrals,J. Reine Angew. Math.,454, 143–161, (1994).

    MathSciNet  MATH  Google Scholar 

  18. Iwaniec, T. and Šverák, V. On mappings with integrable dilatation,Proc. Am. Math. Soc.,118, 181–188, (1993).

    Article  MATH  Google Scholar 

  19. Kinderlehrer, D. Remarks about equilibrium configurations of crystals, inMaterial Instabilities in Continuum Mechanics, Ball, J.M., Ed., Oxford University Press, 1988.

  20. Kinderlehrer, D. and Pedregal, P. Gradient Young measures generated by sequences in Sobolev spaces,J. Geom. Anal.,4(1), 59–90, (1994).

    MathSciNet  MATH  Google Scholar 

  21. Kohn, R.V. The relaxation of a double-well energy,Continuum Mech. Thermodyn.,3, 193–236, (1991).

    Article  MathSciNet  MATH  Google Scholar 

  22. Morrey, C.B.Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin, 1966.

    MATH  Google Scholar 

  23. Müller, S. Higher integrability of determinants and weak convergence inL 1,J. Reine Angew. Math.,412, 20–34, (1990).

    MathSciNet  MATH  Google Scholar 

  24. Müller, S. On quasiconvex functions which are homogeneous of degree 1,Indiana Univ. Math. J.,41(1), 295–301, (1992).

    Article  MathSciNet  MATH  Google Scholar 

  25. Müller, S. and Šverák, V. Attainment results for the two-well problem by convex integration,Geometric Analysis and the Calculus of Variations, (J. Jost, Ed.), Internat. Press, Cambridge, MA, 239–251, (1996).

    Google Scholar 

  26. Reshetnyak, Yu.G.Stability Theorems in Geometry and Analysis, Kluwer Academic Publishers, Dordrecht, 1994.

    MATH  Google Scholar 

  27. Stein, E.Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970.

    MATH  Google Scholar 

  28. Šverák, V. Rank-one convexity does not imply quasiconvexity,Proc. R. Soc. Edin.,120(A), 185–189, (1992).

    MATH  Google Scholar 

  29. Šverák, V. On regularity for the Monge-Ampère equation without convexity assumptions, preprint, 1992.

  30. Šverák, V. On Tartar’s conjecture,Ann. Inst. H. Poincaré, Analyse Non Linéaire,10(4), 405–412, (1993).

    MATH  Google Scholar 

  31. Šverák, V. On the problem of two wells, inMicrostructure and Phase Transition, Kinderlehrer, D., et al., Eds., Springer-Verlag, Berlin, 183–190, 1993.

    Google Scholar 

  32. Šverák, V. Lower semicontinuity for variational integral functionals and compensated compactness,Proc. I.C.M., Zürich, (1994).

  33. Tartar, L. The compensated compactness method applied to systems of conservation laws, inSystems of Nonlinear Partial Differential Equations, Ball, J.M., Ed., NATO ASI Series, Vol. CIII, D. Reidel, 1983.

  34. Yan, B. Remarks about W1, p-stability of the conformai set in higher dimensions,Ann. Inst. H. Poincaré, Analyse Non Linéaire,13(6), 691–705, (1996).

    MATH  Google Scholar 

  35. Yan, B. On rank-one convex and polyconvex conformal energy functions with slow growth,Proc. R. Soc. Edin.,127A, 651–663, (1997).

    Google Scholar 

  36. Yan, B. On quasiconvex hulls of sets of matrices and strong convergence of certain minimizing sequences, preprint, 1993.

  37. Yan, B. and Zhou, Z. Stability of weakly almost conformal mappings,Proc. Amer. Math. Soc.,126, 481–489, (1998).

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, K. Biting theorems for Jacobians and their applications,Ann. Inst. H. Poincaré, Analyse Non Linéaire,7, 345–365, (1990).

    MATH  Google Scholar 

  39. Zhang, K. A construction of quasiconvex functions with linear growth at infinity,Ann. Scuola Norm. Sup. Pisa,19(3), 313–326, (1992).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, S., Šverák, V. & Yan, B. Sharp stability results for almost conformal maps in even dimensions. J Geom Anal 9, 671–681 (1999). https://doi.org/10.1007/BF02921978

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921978

Math Subject Classifications

Key Words and Phrases

Navigation