Skip to main content
Log in

Codimension one minimal cycles with coefficients inZ orZ p , and variational functionals on fibered spaces

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Given a compact, oriented Riemannian manifold M, without boundary, and a codimension-one homology class in H* (M, Z) (or, respectively, in H* (M, Zp) with p an odd prime), we consider the problem of finding a cycle of least area in the given class: this is known as the homological Plateau’s problem.

We propose an elliptic regularization of this problem, by constructing suitable fiber bundles ξ (resp. ζ) on M, and one-parameter families of functionals defined on the regular sections of ξ, (resp. ζ), depending on a small parameter ε.

As ε → 0, the minimizers of these functionals are shown to converge to some limiting section, whose discontinuity set is exactly the minimal cycle desired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anzellotti, G., Baldo, S., and Visintin, A. Asymptotic behavior of the Landau-Lifshitz model of ferromagnetism,Appl. Math. Optim.,23, 171–192, (1991).

    Article  MathSciNet  MATH  Google Scholar 

  2. Baldo, S. Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids,Ann. Inst. H.Poincaré - Analyse Non Linéaire,2, 67–90, (1990).

    MathSciNet  Google Scholar 

  3. Baldo, S. and Orlandi, G. Cycles of least mass in a Riemannian manifold, described through the “phase transition” energy of the sections of a line bundle. Preprint University of Trento, 1995. To appear inMath. Zeitschrift.

  4. Bredon, G.E.Topology and Geometry. Springer-Verlag, New York, 1993.

    MATH  Google Scholar 

  5. De Giorgi, E. and Franzoni, T. Su un tipo di convergenza variazionale,Atti Acc. Naz. Lincei Cl. Sc. Mat. Fis. Natur.,58, 842–850, (1975).

    MATH  Google Scholar 

  6. Federer, H.Geometric Measure Theory. Springer-Verlag, Berlin, 1969.

    MATH  Google Scholar 

  7. Federer, H. The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimension,Bull. A.M.S.,76, 767–771, (1970).

    Article  MathSciNet  MATH  Google Scholar 

  8. Federer, H. Real flat chains, cochains and variational problems,Indiana Univ. Math. J.,24, 351–407, (1974).

    Article  MathSciNet  MATH  Google Scholar 

  9. Federer, H. and Fleming, W.H. Normal and integral currents,Ann. Math.,72, 458–520, (1960).

    Article  MathSciNet  Google Scholar 

  10. Fröhlich, J. and Struwe, M. Variational problems on vector bundles,Comm. Math. Phys.,131, 431–464, (1990).

    Article  MathSciNet  MATH  Google Scholar 

  11. Fonseca, I. and Tartar, L. The gradient theory of phase transitions for system with two potential wells,Proc. Royal Soc. Edinburgh,111A, 89–102, (1989).

    MathSciNet  Google Scholar 

  12. Giusti, E.Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston, 1984.

    MATH  Google Scholar 

  13. Gray, A.Tubes. Addison-Wesley, Redwood City, 1990.

    MATH  Google Scholar 

  14. Greenberg, M.J.Lectures on Algebraic Topology. Benjamin, Menlo Park, 1971.

    Google Scholar 

  15. Gurtin, M.E. Some results and conjectures in the gradient theory of phase transitions. Preprint, University of Minnesota, 1985.

  16. Modica, L. Gradient theory for phase transitions and the minimal interface criterion,Arch. Rat. Mech. Anal,98, 123–142, (1987).

    Article  MathSciNet  MATH  Google Scholar 

  17. Morgan, F. On finiteness of the number of stable minimal hypersurfaces with a fixed boundary,Indiana Univ. Math. J.,35, 779–833, (1986).

    Article  MathSciNet  MATH  Google Scholar 

  18. Morgan, F.Geometric Measure Theory. A Beginner’s Guide. Academic Press, Boston, 1988.

    MATH  Google Scholar 

  19. Modica, L. and Mortola, S. Un esempio di Γ-convergenza,Boll Un. Mat., it., (5),14B, 285–299, (1977).

    MathSciNet  Google Scholar 

  20. Milnor, J.W. and Stasheff, J.D. Characteristic classes,Ann. Math. Studies,76, Princeton University Press, Princeton, NJ, (1974).

    Google Scholar 

  21. Steenrod, N.The Topology of Fibre Bundles. Princeton University Press, Princeton, NJ, 1951.

    MATH  Google Scholar 

  22. Stemberg, P. The effect of a singular perturbation on nonconvex variational problems, Ph.D. Thesis, New York University, 1986.

  23. Thom, R. Quelques propriétés globales des variétés différentiables,Comm. Math. Helvetici,28, 17–86, (1954).

    Article  MathSciNet  MATH  Google Scholar 

  24. Whitney, H. Topological properties of differentiable manifolds,Bull. A.M.S.,43, 785–805, (1937).

    Article  MathSciNet  Google Scholar 

  25. White, B. The structure of minimizing hypersurfaces mod 4,Inventiones Math.,53, 45–58, (1979).

    Article  MATH  Google Scholar 

  26. White, B. A regularity result for minimizing hypersurfaces modulop, Proc. Symp. Pure Math.,44, (1986).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldo, S., Orlandi, G. Codimension one minimal cycles with coefficients inZ orZ p , and variational functionals on fibered spaces. J Geom Anal 9, 547–568 (1999). https://doi.org/10.1007/BF02921972

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921972

Math Subject Classifications

Key Words and Phrases

Navigation