Skip to main content
Log in

Isometry groups of homogeneous quaternionic Kähler manifolds

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

A general method for calculation of the full isometry group of a Riemannian solvmanifold is presented.

Using it we determine the full isometry group of the non-symmetric quaternionic Kähler solvmanifolds M: T-, W-, and V-spaces.

As an application we prove that the isometry group acts transitively on the twistor space and on the SO(3)-principal (“3-Sasakian”) bundle of M and that the manifold M does not admit quotients of finite volume.

As other applications, we give a simple description of the quaternionic Kähler solvmanifolds in terms of a certain spinorial module S of the group Spin(3, 3 +k). The Lie bracket is defined by means of the unique embedding of the vector module V = ℝ3,3+k into Λ2S. We also describe the group of isometries which preserves the principal Kähler submanifold U ⊂ M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseevskiį, D.V. Conjugacy of polar factorizations of Lie groups,Math. USSR. Sbornik,13(1), 12–25, (1971).

    Article  MATH  Google Scholar 

  2. Alekseevskiį, D.V. Classification of quaternionic spaces with a transitive solvable group of motions,Math. USSR Izvestija,9(2), 297–339, (1975).

    Article  Google Scholar 

  3. Alekseevsky, D.V. and Cortés, V. Classification of N-(super)-extended Poincaré algebras and bilinear invariants of the spinor representation of Spin(p, q),Commun. Math. Phys.,183, 477–510, (1997).

    Article  MATH  Google Scholar 

  4. Araki, S.I. On root systems and an infinitesimal classification of irreducible symmetric spaces,J. Math. Osaka City Univ.,13, 1–34, (1962).

    MathSciNet  Google Scholar 

  5. Azencott, R. and Wilson, E. Homogeneous manifolds with negative curvature II,Mem. Am. Math. Soc.,8, (1976).

  6. Besse, A.L.Einstein Manifolds, Springer-Verlag, Berlin, 1987.

    MATH  Google Scholar 

  7. Cecotti, S. Homogeneous Kähler manifolds and T-algebras inN = 2 supergravity and superstrings,Commun. Math. Phys.,124, 23–55, (1989).

    Article  MathSciNet  MATH  Google Scholar 

  8. Cecotti, S., Ferrara, S., and Girardello, L. Geometry of type II superstrings and the moduli of superconformai field theories,Int. J. Mod. Phys.,A4, 2475–2529, (1989).

    MathSciNet  Google Scholar 

  9. Cortés, V. Alekseevskian Spaces,Diff. Geom. Appl.,6, no. 2, 129–168, (1996).

    Article  MATH  Google Scholar 

  10. de Wit, B. and Van Proeyen, A. Symmetries of dual-quaternionic manifolds,Phys. Lett.,B252, 221–229, (1990).

    Google Scholar 

  11. de Wit, B. and Van Proeyen, A. Special geometry, cubic polynomials and homogeneous quaternionic spaces.Commun. Math. Phys.,149, 307–333, (1992).

    Article  MATH  Google Scholar 

  12. de Wit, B. and Van Proeyen, A. Broken sigma-model isometries in very special geometry,Phys. Lett.,B293, 94–99, (1992).

    Google Scholar 

  13. de Wit, B. and. Van Proeyen, A. Isometries of special manifolds,Proceedings of the Meeting on Quatemionic Structures in Mathematics and Physics, Trieste, September 1994.

  14. de Wit, B., Vanderseypen, F., and Van Proeyen, A. Symmetry structure of special geometries,Nucl. Phys.,B400, 463–521, (1993).

    Article  Google Scholar 

  15. Gindikin, S.G., Pyateckiį-Shapiro, I.I., and Vinberg, E.B. Homogeneous Kähler manifolds, inGeometry of Homogeneous Bounded Domains (C.I.M.E., 3∘ Ciclo, Urbino, 1967), Edizioni Cremonese, Rome, 3–87, 1968.

    Google Scholar 

  16. Gordon, C.S. and Wilson, N. Isometry groups of Riemannian solvmanifolds,Trans. Am. Math. Soc,307, 245–269, (1988).

    Article  MathSciNet  MATH  Google Scholar 

  17. Helgason, S.Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, Orlando, FL, 1978.

    MATH  Google Scholar 

  18. Kobayashi, S. and Nomizu, K.Foundations of Differential Geometry, Vol. I, Interscience, John Wiley & Sons, New York, 1963.

    MATH  Google Scholar 

  19. Onishchik, A.L. and Vinberg, E.L.Lie Groups and Algebraic Groups, Springer-Verlag, Berlin, 1990.

    MATH  Google Scholar 

  20. Pyateckiį-Shapiro, I.I.Automorphic Functions and the Geometry of Classical Domains, Gordon and Breach, New York, 1969.

    Google Scholar 

  21. Wolter, T.Homogene Mannigfaltigkeiten nichtpositiver Krümmung, Dissertation, Zürich, 1989.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Alekseevsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alekseevsky, D.V., Cortés, V. Isometry groups of homogeneous quaternionic Kähler manifolds. J Geom Anal 9, 513–545 (1999). https://doi.org/10.1007/BF02921971

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921971

Keywords

Navigation