Skip to main content
Log in

Â-genus and collapsing

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

If M is a compact spin manifold, we give relationships between the vanishing of Â(M) and the possibility that M can collapse with curvature bounded below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M. Convergence and rigidity of manifolds under Ricci curvature bounds,Inv. Math.,102, 429–445, (1990).

    Article  MATH  Google Scholar 

  2. Atiyah, M. and Hirzebruch, F. Spin-manifolds and group actions, inEssays on Topology and Related Topics, Springer-Verlag, New York, 18–28, (1970).

    Google Scholar 

  3. Atiyah, M., Patodi, V., and I. Singer, I. Spectral Asymmetry and Riemannian Geometry I,Math. Proc. of Camb. Phil. Soc.,77, 43–69, (1975).

    Article  MathSciNet  MATH  Google Scholar 

  4. Besse, A.Einstein Manifolds, Springer-Verlag, New York, (1987).

    MATH  Google Scholar 

  5. Bismut, J.-M. and Cheeger, J. η-invariants and their adiabatic limits,J. Am. Math. Soc.,2, 33–70, (1989).

    Article  MathSciNet  MATH  Google Scholar 

  6. Bredon, G.Introduction to Compact Transformation Groups, Academic Press, New York, (1972).

    MATH  Google Scholar 

  7. Cheeger, J. and Gromoll, D. The splitting theorem for manifolds of nonnegative Ricci curvature,J. Diff. Geom.,6, 119–128,(1971).

    MathSciNet  MATH  Google Scholar 

  8. Fukaya, K. and Yamaguchi, T. The fundamental groups of almost nonnegatively-curved manifolds,Ann. Math.,136, 253–333, (1992).

    Article  MathSciNet  Google Scholar 

  9. Gallot, S. Inégalités isopérimétriques, courbure de Ricci et invariants géométriques II,C.R. Acad. Sci. Sér. I Math.,296, 365–368, (1983).

    MathSciNet  MATH  Google Scholar 

  10. Gromov, M. Curvature, diameter and Betti numbers,Comm. Math. Helv.,56, 179–195, (1981).

    Article  MathSciNet  MATH  Google Scholar 

  11. Gromov, M., Lafontaine, J., and Pansu, P.Structures Métriques pour les Variétés Riemanniennes, CEDIC, Paris, (1978).

    Google Scholar 

  12. Grove, K., Petersen, P., and Wu, J.-Y. Geometric finiteness theorems via controlled topology,Inv. Math.,99, 205–213, (1990).

    Article  MathSciNet  MATH  Google Scholar 

  13. Kasue, A. A convergence theorem for Riemannian manifolds and some applications,Nagoya Math. J.,114, 21–51, (1989).

    MathSciNet  MATH  Google Scholar 

  14. Lawson, H.B. and Michelsohn, M.-L.Spin Geometry, Princeton University Press, Princeton, NJ, (1989).

    MATH  Google Scholar 

  15. Lewkowicz, M. Positive scalar curvature and local actions of nonabelian Lie groups,J. Diff. Geom.,31, 29–45, (1990).

    MathSciNet  Google Scholar 

  16. Ochanine, S. Genres elliptiques equivariants, inElliptic Curves and Modular Forms in Algebraic Topology, Springer LNM 1326, Springer-Verlag, New York, 107–122, (1988).

    Chapter  Google Scholar 

  17. Petersen, P., Wei, G., and Ye, R. Controlled geometry via smoothing,Comment. Math. Helv.,74, 345–363, (1999).

    Article  MathSciNet  MATH  Google Scholar 

  18. Weiss, M. Curvature and finite domination,Proc. Am. Math. Soc.,124, 615–622, (1996).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Lott.

Additional information

Communicated by Robert Brooks

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lott, J. Â-genus and collapsing. J Geom Anal 10, 529–543 (2000). https://doi.org/10.1007/BF02921948

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921948

Keywords

Navigation