Skip to main content
Log in

The electrical breakdown in vacuum

  • Published:
Applied Scientific Research, Section B

Summary

Experiments have been performed in order to get information about the phenomena preceding the electrical breakdown in small vacuum gaps. Most experiments have been made with impulse voltages of different rise times; some complementary results obtained with alternating voltage are also presented. The effect of surface layers on the breakdown voltage and on the pre-breakdown current is discussed. It has been found that the rise time of the voltage affects both the breakdown voltage and the pre-breakdown current. The experiments seem to indicate that breakdown in the underlying circumstances is the result of a discharge in metal vapour, originating from the anode. The vapour is thought to be generated by the heating of the anode by a bombardment of field-emission electrons. The transition of the pre-breakdown current to a sudden discharge may occur when the vapour density passes a critical value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Myers, O. F. and W. A. Raatz, U.S.A.E.C.; LRL — 158, 1955.

  2. Boyle, W. S., P. Kisliuk, and L. H. Germer, J. Appl. Phys.26 (1955) 720.

    Article  ADS  Google Scholar 

  3. Ahearn, A. J., Phys. Rev.50 (1936) 538.

    Article  ADS  Google Scholar 

  4. Dyke, W. P. and J. K. Trolan, Phys. Rev.82 (1951) 575; Phys. Rev.89 (1953) 799.

    Google Scholar 

  5. Dyke, W. P., J. K. Trolan, E. E. Martin, and J. P. Barbour, Phys. Rev.91 (1953) 1043.

    Article  ADS  Google Scholar 

  6. Dolan, W. W., W. P. Dyke, and J. K. Trolan, Phys. Rev.91 (1953) 1054.

    Article  ADS  Google Scholar 

  7. Denholm, A. S., Can. J. Phys.36 (1958) 476.

    ADS  Google Scholar 

  8. Chambers, C. C., J. Franklin Inst.218 (1934) 463.

    Article  Google Scholar 

  9. Cranberg, L., J. Appl. Phys.23 (1952) 518.

    Article  ADS  Google Scholar 

  10. Van Atta, L. C., R. J. van de Graaff and H. A. Barton, Phys. Rev.43 (1933) 158.

    Article  ADS  Google Scholar 

  11. McKibben, J. L. and R. K. Beauchamp, U. S.A.E.C., AECD-2039, 1948.

  12. Trump, J. G. and R. J. van de Graaff, J. Appl. Phys.18 (1947) 327.

    Article  ADS  Google Scholar 

  13. Webster, E. W., R. J. van de Graaff and J. G. Trump, J. Appl. Phys.23 (1952) 264.

    Article  ADS  Google Scholar 

  14. Dushman, S., The scientific Foundations of Vacuumtechnique, John Wiley and Sons Inc., New York 1949, pp 631–635.

    Google Scholar 

  15. Mason, R. C., Phys. Rev.52 (1937) 126.

    Article  ADS  Google Scholar 

  16. Leader, D., Proc. Instn Elect. Engrs100 (IIa) (1953) 138.

    Google Scholar 

  17. Rosanova, N. B. and V. L. Granovskii, Sovjet Physics, Techn. Phys.1 (1956) 471.

    Google Scholar 

  18. Ingersoll, L. R., O. J. Zobel and A. C. Ingersoll, Heat conduction, The University of Wisconsin Press 1954, Ch. 7.

  19. Chiles, J. A., J. Appl. Phys.8 (1937) 622.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wijker, W.J. The electrical breakdown in vacuum. Appl. sci. Res. 9, 1–20 (1961). https://doi.org/10.1007/BF02921887

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921887

Keywords

Navigation