Skip to main content
Log in

Systoles of two extremal Riemann surfaces

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The purpose of this note is to study the π1 andH 1 systoles of two Riemann surfaces, the Klein genus 3 surface, y7 =x 2(1 −x), which we will denoteS K , and Bolza’s surface of genus 2,y 2 =x(1 −x 4), which we will denoteS B . Using period matrices, we identify theH 1 systoles and show for these examples that the π1 andH 1 systoles are in one-to-one correspondence. In their respective Teichmüller spaces,S B is known to be extremal andS K locally extremal for these systoles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, H. F.An Introduction to the Theory of Multiply Periodic Functions. Cambridge University Press, NY, 1907.

    Google Scholar 

  2. Barnes, E. S. The perfect and extreme senary forms.Canadian Journal of Mathematics,9, 235–242 (1957).

    MathSciNet  MATH  Google Scholar 

  3. Beardon, A. F.The Geometry of Discrete Groups. Springer-Verlag, New York, 1983.

    Google Scholar 

  4. Bolza, O. On binary sextics with linear transformations into themselves.Amer. J. Math. 10, 47–60 (1888).

    Article  MathSciNet  Google Scholar 

  5. Buser, P., and Sarnak, P. On the period matrix of a Riemann surface of large genus (with an appendix by J. H. Conway and N. J. A. Sloane).Invent. Math. 117, 27–56 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  6. Craig, M. Extreme forms and cyclotomy.Mathematika 25, 44–56 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  7. Conway, J. H., and Sloane, N. J. A.Sphere Packings, Lattices and Groups. Springer-Verlag, 1988.

  8. Conway, J. H., and Sloane, N. J. A. Low dimensional lattices III, perfect forms.Proc. R. Soc. Lond. A418, 43–80 (1988).

    MathSciNet  Google Scholar 

  9. Earle, C. J., “H. E. Rauch, Function Theorist” inDifferential Geometry and Complex Analysis, I, (Chavel and H. M. Farkas eds.). Springer-Verlag, New York, 1985.

    Google Scholar 

  10. Elstrodt, J. Die Selbergsche Spurformel für kompacte Riemannsche Flächen.Jahrsber. Deutch. Math.-Verein 83, 45–77 (1981).

    MathSciNet  MATH  Google Scholar 

  11. Gromov, M. Systoles and intersystolic inequalities, Actes de la Table Ronde de Géométrie Differentielle (Luming, 1992), 291–362, Semin. Congr., 1, Soc. Math. France, Paris, 1996.

    Google Scholar 

  12. Klein, F. Ueber die transformation siebenter Ordnung der elliptischen Functionen.Math. Ann. 25, 157–196 (1885).

    Article  MathSciNet  Google Scholar 

  13. Lang, S.Introduction to Algebraic and Abelian Functions. Springer-Verlag, 1982.

  14. Mazur, B. Arithmetic on curves.Bull. Amer. Math. Soc. 14, 207–259 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  15. McKean, H. P. Selberg’s trace formula as applied to a compact Riemann surface.Communications on Pure and Applied Mathematics 25, 225–246 (1972).

    Article  MathSciNet  Google Scholar 

  16. Rauch, H. E., and Lewittes, J. “The Riemann surface of Klein with 168 automorphisms” inProblems in Analysis, A Symposium in Honor of Solomon Bochner. Princeton University Press, Princeton, NJ, 1970.

    Google Scholar 

  17. Riera, G. Deformations of Klein’s curve and representations of its group of 168 automorphisms.Complex Variables 6, 265–281 (1986).

    MathSciNet  Google Scholar 

  18. Riera, G., and Rodrigues, R. The period matrix of Bring’s curve.Pacific Journal of Mathematics 154, 179–200 (1992).

    MathSciNet  MATH  Google Scholar 

  19. Schiller, J. Moduli for special Riemann surfaces of genus 2.Trans. Math. Math. Soc. 144, 95–113 (Oct. 1969).

    Article  MathSciNet  MATH  Google Scholar 

  20. Schmutz, P. Riemann surfaces with shortest geodesic of maximal length.Geometric and Functional Analysis 3, 564–631 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  21. Weil, A. Sur les périodes des integrals abéliennes.Communications on Pure and Applied Mathematics 29, 813–819 (1976).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Quine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quine, J.R. Systoles of two extremal Riemann surfaces. J Geom Anal 6, 461–474 (1996). https://doi.org/10.1007/BF02921661

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921661

Math Subject Classification

Key Words and Phrases

Navigation