Skip to main content
Log in

Holomorphic curvature of Finsler metrics and complex geodesics

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In his famous 1981 paper, Lempert proved that given a point in a strongly convex domain the complex geodesics (i.e., the extremal disks) for the Kobayashi metric passing through that point provide a very useful fibration of the domain. In this paper we address the question whether, given a smooth complex Finsler metric on a complex manifoldM, it is possible to find purely differential geometric properties of the metric ensuring the existence of such a fibration in complex geodesies ofM. We first discuss at some length the notion of holomorphic sectional curvature for a complex Finsler metric; then, using the differential equation of complex geodesies we obtained in [AP], we show that for every pair (p;v) ∈T M, withv ≠ 0, there is a (only a segment if the metric is not complete) complex geodesic passing throughp tangent tov iff the Finsler metric is Kähler, has constant holomorphic sectional curvature −4, and its curvature tensor satisfies a specific simmetry condition—which are the differential geometric conditions we were after. Finally, we show that a complex Finsler metric of constant holomorphic sectional curvature −4 satisfying the given simmetry condition on the curvature is necessarily the Kobayashi metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abate, M.Iteration Theory of Holomorphic Maps on Taut Manifolds. Mediterranean Press, Cosenza, 1989.

    MATH  Google Scholar 

  2. Abate, M., and Patrizio, G. Uniqueness of complex geodesics and characterization of circular domains.Man. Math. 74, 277–297 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  3. Bejancu, A.Finsler Geometry and Applications. Ellis Horwood Limited, Chichester, 1990.

    MATH  Google Scholar 

  4. Burbea, J. On the hessian of the Carathéodory metric.Rocky Mtn. Math. J. 8, 555–559 (1978).

    MathSciNet  MATH  Google Scholar 

  5. Faran, J. J. Hermitian Finsler metrics and the Kobayashi metric.J. Diff. Geom. 31, 601–625 (1990).

    MathSciNet  MATH  Google Scholar 

  6. Heins, M. On a class of conformai mappings.Nagoya Math. J. 21, 1–60 (1962).

    MathSciNet  MATH  Google Scholar 

  7. Kobayashi, S.Hyperbolic Manifolds and Holomorphic Mappings. Dekker, New York, 1970.

    MATH  Google Scholar 

  8. Kobayashi, S. Negative vector bundles and complex Finsler structures.Nagoya Math. J. 57, 153–166 (1975).

    MathSciNet  MATH  Google Scholar 

  9. Lempert, L. La métrique de Kobayashi et la représentation des domaines sur la boule.Bull. Soc. Math. France 109, 427–474(1981).

    MathSciNet  MATH  Google Scholar 

  10. Pang, M. Y. Finsler metrics with the properties of the Kobayashi metric on convex domains.Publications Mathématiques 36, 131–155 (1992).

    MATH  Google Scholar 

  11. Royden, H. L. Complex Finsler metrics.Contemporary Mathematics. Proceedings of Summer Research Conference. American Mathematical Society, Providence, 1984, pp. 119–124.

    Google Scholar 

  12. Royden, H. L. The Ahlfors-Schwarz lemma: The case of equality.J. Anal. Math. 46, 261–270 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  13. Royden, H. L., and Wong, P. M. Carathéodory and Kobayashi metrics on convex domains. Preprint (1983).

  14. Rund, H.The Differential Geometry of Finsler Spaces. Springer-Verlag, Berlin, 1959.

    MATH  Google Scholar 

  15. Rund, H. Generalized metrics on complex manifolds.Math. Nach. 34, 55–77 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  16. Suzuki, M. The intrinsic metrics on the domains in ℂn.Math. Rep. Toyama Univ. 6, 143–177 (1983).

    MathSciNet  MATH  Google Scholar 

  17. Vesentini, E. Complex geodesics.Comp. Math. 44, 375–394 (1981).

    MathSciNet  MATH  Google Scholar 

  18. Wong, B. On the holomorphic sectional curvature of some intrinsic metrics.Proc. Am. Math. Soc. 65, 57–61(1977).

    Article  MATH  Google Scholar 

  19. Wu, H. A remark on holomorphic sectional curvature.Indiana Math. J. 22, 1103–1108 (1973).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Abate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abate, M., Patrizio, G. Holomorphic curvature of Finsler metrics and complex geodesics. J Geom Anal 6, 341–363 (1996). https://doi.org/10.1007/BF02921655

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921655

Math Subject Classification

Key Words and Phrases

Navigation