Skip to main content
Log in

A review of protein engineering for the food industry

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In this review I briefly describe the technique of protein engineering and indicate how the present state of knowledge allows proteins to be mutated to increase or decrease stability. I discuss experiments on both model proteins and those of relevance to the food industry and show how hydrophobic forces are a major driving force for folding as well as having a major role in thermostability, I also indicate the large contribution that hydrogen bonding, electrostatic interactions and, in a less well predicted way, disulfide bridges make to thermostability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Research for the Food and Drink Industry (1990)An FDF Report to Ministry of Agriculture, Fisheries and Food.

  2. Hendrickson, W. A. and Wiithrich, K. (eds.) (1991)Macromolecular Structures 1991: Atomic Structures of Biological Macromolecules Reported During 1990. Current Biology, London.

    Google Scholar 

  3. Hendrickson, W. A. and Wuthrich, K. (eds.) (1992)Macromolecular Structures 1992: Atomic Structures of Biological Macromolecules Reported During 1991. Current Biology, London.

    Google Scholar 

  4. Hendrickson, W. A. and Wuthrich, K. (eds.) (1993)Macromolecular Structures 1993: Atomic Structures of Biological Macromolecules Reported During 1992. Current Biology, London.

    Google Scholar 

  5. Privalov, P. L. (1990) Cold denaturation of proteins.Crit. Rev. Biochem. 25, 281–305.

    Article  CAS  Google Scholar 

  6. Kellis, J. T., Jr., Nyberg, K., and Fersht, A. R. (1989) Energetics of complementary side-chain packing in a protein hydrophobic core.Biochemistry 28, 4914–4922.

    Article  CAS  Google Scholar 

  7. Tanford, C. (1970) Protein denaturation.Adv. Protein Chem. 24, 1–95.

    Article  CAS  Google Scholar 

  8. Menendaz-Aries, L. and Argos, P. (1989) Engineering protein thermal stability. Sequence statistics point to residue substitutions in α-helices.J. Mol. Biol. 206, 397–406.

    Article  Google Scholar 

  9. Argos, P., Rossmann, M. G., Grav, U. M., Zuber, H., Frank, G., and Tratschin, J. D. (1979) Thermal stability and protein structure.Biochemistry 18, 5698–5703.

    Article  CAS  Google Scholar 

  10. Dill, K. A. (1990) Dominant forces in protein folding.Biochemistry 29, 7133–7155.

    Article  CAS  Google Scholar 

  11. Kauzmann, W. (1959) Some factors in the interpretation of protein denaturation.Adv. Protein Chem. 14, 1–63.

    Article  CAS  Google Scholar 

  12. Pace, C. N. (1975) The stability of globular proteins.CRC Crit. Rev. Biochem. 3, 1–43.

    Article  CAS  Google Scholar 

  13. Privalov, P. L. (1979) Stability of proteins: small globular proteins.Adv. Protein Chem. 33, 167–241.

    Article  CAS  Google Scholar 

  14. Privalov, P. L. and Gill, S. J. (1988) Stability of protein structure and hydrophobic interaction.Adv. Protein Chem. 39, 191–234.

    Article  CAS  Google Scholar 

  15. Kellis, J. T., Jr., Nyberg, K., Sali, D., and Fersht, A. R. (1988) Contribution of hydrophobic interactions to protein stability.Nature 333, 784–786.

    Article  CAS  Google Scholar 

  16. Matsumura, M., Wozniak, J. A., Dao-pin, S., and Matthews, B. W. (1989) Structural studies of mutants of T4 lysozyme that alter hydrophobic stabilization.J. Biol. Chem. 264, 16, 059-16,066.

    Google Scholar 

  17. Pantoliano, M. W., Whitlow, M., Wood, J. F., Dodd, S. W., Hardman, K. D., Rollence, M. L., and Bryan, P. N. (1989) Large increases in general stability for subtilisin BPN’ through incremental changes in the free energy of unfolding.Biochemistry 28, 7205–7213.

    Article  CAS  Google Scholar 

  18. Stearman, R. S., Frankel, A. D., Freire, E., Liu, B., and Pabo, C. O. (1988) Combining thermostable mutations increases the stability ofX repressor.Biochemistry 27, 7571–7574.

    Article  CAS  Google Scholar 

  19. Dang, L. X., Merz, K. M., and Kollman, P. A. (1989) Energy calculations on protein stability: Thr 157 → Val 157 mutation of T4 lysozyme.J. Am. Chem. Soc. 111, 8505–8508.

    Article  CAS  Google Scholar 

  20. Creighton, T. E. (1991) Stability of folded conformation.Curr. Opinion Struct. Biol. 1, 5–16.

    Article  CAS  Google Scholar 

  21. Chan, H. S. and Dill, K. A. (1989a) Intrachain loops in polymers-effects of excluded volume.J. Chem. Phys. 90, 492–509.

    Article  CAS  Google Scholar 

  22. Chan, H. S. and Dill, K. A. (1989b) Compact polymers.Macromolecules 22, 4559–4573.

    Article  CAS  Google Scholar 

  23. Chan, H. S. and Dill, K. A. (1990a) The effects of internal constraints on the configurations of chain molecules.J. Chem. Phys. 92, 3118–3135.

    Article  CAS  Google Scholar 

  24. Chan, H. S. and Dill, K. A. (1990b) Origins of structure in globular proteins.Proc. Natl. Acad. Sci. USA 87, 6388–6392.

    Article  CAS  Google Scholar 

  25. Tadokoro, H. (1979)Structure of Crystalline Polymers. Krieger, Melbourne, FL.

    Google Scholar 

  26. Perry, L. J. and Wezel, R. (1984) Disulfide bond engineered into T4 lysozyme: stabilization of the protein toward thermal inactivation.Science 226, 555–557.

    Article  CAS  Google Scholar 

  27. Matsumura, M., Becktel, W. J., and Matthews, B. W. (1988) Hydrophobic stabilization in T4 lysozyme determined directly by multiple substitutions of Ile 3.Nature 334, 406–410.

    Article  CAS  Google Scholar 

  28. Pjuru, P. E., Matsumura, M., Wozniak, J. A., and Matthews, B. W. (1990) Structure of a thermostable disulfide-bridge mutant of phage T4 lysozyme shows that an engineered cross-link in a flexible region does not increase the rigidity of the folded protein.Biochemistry 29, 2592–2598.

    Article  Google Scholar 

  29. Pantoliano, M. W., Ladner, R. C., Bryan, P. N., Rollence, M. L., Wood, J. F., and Poulos, T. L. (1987) Protein engineering of subtilisin BPN’: enhanced stabilization through the introduction of two cysteines to form a disulfide bond.Biochemistry 26, 2077–2082.

    Article  CAS  Google Scholar 

  30. Mitchinson, C. and Wells, J. A. (1989) Protein engineering of disulfide bonds in subtilisin BPN’.Biochemistry 28, 4807–4815.

    Article  CAS  Google Scholar 

  31. Wells, J. A. and Powers, D. B. (1986)In vivo formation and stability of engineered disulfide bonds in subtilisin.J. Biol. Chem. 261, 6564–6570.

    CAS  Google Scholar 

  32. Villafranca, J. E., Howell, E. E., Oatley, S. J., Xuong, N., and Kraut, J. (1987) An engineered disulfide bond in dihydrofolate reductase.Biochemistry 26, 2182–2189.

    Article  CAS  Google Scholar 

  33. Sauer, R. J., Hehir, K., Stearman, R. S., Weiss, M. A., Jeitler-Nilsson, A., Suchanek, E. G., and Pabo, C. O. (1986) An engineered intersubunit disulfide enhances the stability and DNA binding of the N-terminal domain of 1 repressor.Biochemistry 25, 5992–5998.

    Article  CAS  Google Scholar 

  34. Volkin, D. B. and Klibanov, A. M. (1987) Thermal destruction processes in proteins involving cystine residues.J. Biol. Chem. 262, 2945–2950.

    CAS  Google Scholar 

  35. Zvelebil, J. J. M., Markéta, J. J. M., Zvelebil, J. J. M., and Sternberg, M. J. E. (1988) Analysis and prediction of the location of catalytic residues in enzymes.Protein Eng. 2, 127–138.

    Article  CAS  Google Scholar 

  36. Mehler, E. L. and Eichelle, G. (1984) Electrostatics effects in water-accessible regions of proteins.Biochemistry 23, 3887–3891.

    Article  CAS  Google Scholar 

  37. Pickersgill, R. W. (1988) Protocol: A rapid method of calculating charge-charge interaction energies in proteins.Protein Eng. 2, 247,248.

    Article  Google Scholar 

  38. Warwicker, J. and Watson, H. C. (1982) Calculation of the electric potential in the active site cleft due to a-helix dipoles.J. Mol. Biol. 157, 671–679.

    Article  CAS  Google Scholar 

  39. Sternberg, M. J. E., Hayes, F. R. F., Russell, A. J., Thomas, P. G., and Fersht, A. R. (1987) Prediction of electrostatics effects of engineering of protein charges.Nature 330, 86–88.

    Article  CAS  Google Scholar 

  40. Gilson, M. K. and Honig, B. H. (1987) Calculation of electrostatic potentials in an enzyme active site.Nature 330, 84–86.

    Article  CAS  Google Scholar 

  41. Fersht, A. R. and Sternberg, M. J. E. (1989) Can a simple function for the dielectric response model electrostatic effects in globular proteins.Protein Eng. 2, 527–530.

    Article  CAS  Google Scholar 

  42. Blagdon, D. E. and Goodman, M. (1975) Mechanisms of protein and polypeptide helix initiation.Biopolymers 14, 241–245.

    Article  CAS  Google Scholar 

  43. Richardson, J. S. and Richardson, D. C. (1988) Amino acid preferences for specific locations at the ends of a-helices.Science 240, 1648–1652.

    Article  CAS  Google Scholar 

  44. Nicholson, H., Becktel, W. J., and Matthews, D. W. (1988) Enhanced protein thermostability from designed mutations that interact with a-helix dipoles.Nature 336, 651–656.

    Article  CAS  Google Scholar 

  45. Sali, D., Bycroft, M., and Fersht, A. R. (1988) Stabilization of protein structure by interaction of a-helix dipole with a charged side-chain.Nature 335, 740–745.

    Article  CAS  Google Scholar 

  46. Pickersgill, R. W., Sumner, I. G., Collins, M. E., Warwicker, J., Perry, B., Bhat, M. K., and Good-enough, P. W. (1991) Modification of the stability of phospholipase A2 by charge engineering.FEBS Lett. 281, 219–222.

    Article  CAS  Google Scholar 

  47. Warwicker, J. (1992) Model for the differential stabilities of poliovirus and rhinovirus for acidic pH, based on electrostatics calculations.J. Mol. Biol. 223, 247–257.

    Article  CAS  Google Scholar 

  48. Harper, E. T. and Rose, G. D. (1993) Helix stop signals in proteins and peptides: the capping box.Biochemistry 32, 7605–7609.

    Article  CAS  Google Scholar 

  49. el Masry, N. F. and Fersht, A. R. (1994) Mutational analysis of the N-capping box of the a-helix of chymotrypsin inhibitor 2.Protein Eng. 7, 777–782.

    Article  Google Scholar 

  50. Wilmanns, M., Hyde, C. C., Davies, D. R., Kirschner, K., and Jansonius, J. N. (1991) Structural conservation in parallel b/a-barrel enzymes that catalyze three sequential reactions in the pathway of tryptophan biosynthesis.Biochemistry 30, 9161–9169.

    Article  CAS  Google Scholar 

  51. Van Tilbeurgh, H., Jenkins, J., Chiadmi, M., Janin, J., Wodak, S. J., Mrabet, N., and Lambeir, A. M. (1992) Protein engineering of xylose (glucose) isomerase fromActinoplanes missouriensis; 3. Changing metal specificity and the pH profile by site directed mutagenesis.Biochemistry 31, 5467–5471.

    Article  Google Scholar 

  52. Jenkins, J., Janin, J., Chiadmi, M., Van Tilbeurgh, H., Lasters, L., De Maeyer, D., Van Belle, D., Wodak, S. J., Lauwereys, M., Stanssens, P., Mrabet, N., Snauwaert, J., Matthyssens, G., and Lambeir, A.-M. (1992) Protein engineering of xylose (glucose) isomerase fromActinoplanes missouriensis; 1. Crystallography and site directed mutagenesis of metal binding sites.Biochemistry 31, 5449–5458.

    Article  CAS  Google Scholar 

  53. Lambeir, A-M., Lauwereys, M., Stanssens, P., Mrabet, N., Snauwaert, J., Van Tilbeurgh, H., Matthyssens, G., Lasters, I., De Maeyer, M., Wodak, S., Jenkins, J., Chiadmi, J., and Janin, J. (1992) Protein engineering of xylose (glucose) isomerase fromActinoplanes missouriensis; 2. Site directed mutagenesis of the xylose binding site.Biochemistry 31, 5459–5466.

    Article  CAS  Google Scholar 

  54. Mrabet, N. T., Van den Broeck, A., Van den Brande, I., Stanssens, P., Laroche, Y., Lambeir, A.-M., Matthijssens, G., Jenkins, J., Chiadmi, M., van Tilbeurgh, H., Rey, F., Janin, J., Quax, W. J., Lasters, I., De Maeyer, M., and Wodak, S. J. (1992) Arginine residues as stabilizing elements in proteins.Biochemistry 31, 2239–2253.

    Article  CAS  Google Scholar 

  55. Pickersgill, R. W., Jenkins, J. A., Harris, G. W., Nasser, W., and Robert-Baudouy, J. (1994) The structure ofBacillus subtilis pectate lyase in complex with calcium.Nature Structural Biol. 1, 717–723.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodenough, P.W. A review of protein engineering for the food industry. Mol Biotechnol 4, 151–166 (1995). https://doi.org/10.1007/BF02921609

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921609

Index Entries

Navigation