Skip to main content
Log in

Rigidity of harmonic maps of maximum rank

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Thehomotopical rank of a mapf:MN is, by definition, min{dimg(M) ¦g homotopic tof}. We give upper bounds for this invariant whenM is compact Kähler andN is a compact discrete quotient of a classical symmetric space, e.g., the space of positive definite matrices. In many cases the upper bound is sharp and is attained by geodesic immersions of locally hermitian symmetric spaces. An example is constructed (Section 9) to show that there do, in addition, exist harmonic maps of quite a different character. A byproduct is construction of an algebraic surface with large and interesting fundamental group. Finally, a criterion for lifting harmonic maps to holomorphic ones is given, as is a factorization theorem for representations of the fundamental group of a compact Kähler manifold. The technique for the main result is a combination of harmonic map theory, algebra, and combinatorics; it follows the path pioneered by Siu in his ridigity theorem and later extended by Sampson.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beauville, A. Le groupe de monodromie d’hypersurfaces et d’intersections completes. Lect. Notes. Math.1194, 1–18 (1986).

    Article  MathSciNet  Google Scholar 

  2. Borel, A. Compact Clifford-Klein forms of symmetric spaces. Topology2, 111–122 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  3. Carlson, J. A., and Hernández, L. Harmonic maps from compact Kähler manifolds to exceptional hyperbolic spaces. J. Geom. Anal.1, 339–357 (1991).

    MathSciNet  MATH  Google Scholar 

  4. Carlson, J., Kasparian, A., and Toledo, D. Variations of Hodge structure of maximal dimension. Duke Math. J.58, 669–694 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  5. Carlson, J., and Toledo, D. Harmonic mappings of Kähler manifolds to locally symmetric spaces. Pub. Math. IHES69, 173–201 (1989).

    MathSciNet  MATH  Google Scholar 

  6. Corlette, K. Flat G-bundles with canonical metrics. J. Diff. Geom.28, 361–382 (1988).

    MathSciNet  MATH  Google Scholar 

  7. Corlette, K. Rigid representations of Kahlerian fundamental groups. J. Diff. Geom.33, 239–252 (1991).

    MathSciNet  MATH  Google Scholar 

  8. Corlette, K. Nonabelian Hodge theory. Proceedings, 1990 AMS Summer Institute in Differential Geometry, to appear.

  9. Eells, J., and Sampson, J. H. Harmonic mappings of Riemannian manifolds. Amer. J. Math.86, 109–160 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  10. Kostant, B. Lie algebra cohomology and the generalized Borel-Weil Theorem. Ann. Math.74, 329–387 (1961).

    Article  MathSciNet  Google Scholar 

  11. Griffiths, P. A. Periods of rational integrals, I, II. Ann. Math.90, 469–526, 805–865 (1969).

    Google Scholar 

  12. Griffiths, P. A. Periods of integrals of algebraic manifolds, III. Pub. Math. I.H.E.S.38, 125–180 (1970).

    MATH  Google Scholar 

  13. Helgason, S. Differential Geometry, Lie Groups, and Symmetric Spaces. New York: Academic Press 1978.

    MATH  Google Scholar 

  14. Hitchin, N. J. Self-duality equations on a Riemann surface. Proc. London Math. Soc.55(3), 59–126 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  15. Malcev, A. I. Commutative subalgebras of semisimple Lie algebras. Izvestia Ak. Nauk USSR (Russian)9, 125–133 (1945); Amer. Math. Soc. Transl.40 (1951) (English).

    Google Scholar 

  16. Margulis, G. A. Discrete groups of motions of manifolds of non-positive curvature (in Russian). Proc. Int. Cong. Math., Vancouver, 1974, vol.2, 35–44; Amer. Math. Soc. Transl.109, 33–45 (1977).

    Google Scholar 

  17. Matsuki, T. The orbits of affine symmetric spaces under the action of minimal parabolic subgroups. J. Math. Soc. Japan31, 331–357 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  18. Mostow, G. D. Strong rigidity of locally symmetric spaces. Ann. Math. Stud.78, Princeton Univ. Press (1973).

  19. Sampson, J. H. Applications of harmonic maps to Kähler geometry. Contemp. Math.49, 125–133 (1986).

    MathSciNet  MATH  Google Scholar 

  20. Schur, I. Zur Theorie der vertauschbaren Matrizen. J. Reine und Andgew. Math.130, 66–76 (1905).

    Google Scholar 

  21. Simpson, C. T. Higgs bundles and local systems. Pub. Math. IHES75, 5–95 (1992).

    MathSciNet  MATH  Google Scholar 

  22. Simpson, C. T. Some families of local systems over smooth projective varieties. Preprint, Univ. Toulouse III, 1991.

  23. Siu, Y. T. Complex analyticity of harmonic maps and strong rigidity of compact Kähler manifolds. Ann. Math.112, 73–111 (1980).

    Article  MathSciNet  Google Scholar 

  24. Siu, Y. T. Strong rigidity of compact quotients of exceptional bounded symmetric domains. Duke Math. J.48, 857–871 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  25. Siu, Y. T. Complex analyticity of harmonic maps, vanishing and Lefschetz theorems. J. Diff. Geom.17, 55–138 (1982).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research partially supported by the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlson, J.A., Toledo, D. Rigidity of harmonic maps of maximum rank. J Geom Anal 3, 99–140 (1993). https://doi.org/10.1007/BF02921579

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921579

Math Subject Classification

Key Words and Phrases

Navigation