Skip to main content
Log in

Immobilized metal ion affinity chromatography

  • Protocol
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

This article describes the technique of immobilized metal ion affinity chromatography (1MAC). The IMAC stationary phases are designed to chelate certain metal ions that have selectivity for specific groups in peptides and on protein surfaces. The number of stationary phases that can be synthesized for efficient chclation of metal ions is unlimited, but the critical consideration is that there is enough exposure of the metal ion to interact with the proteins, preferably in a biospecific manner. The versatility of IMAC is one of its greatest assets. An important contribution to the correct use of IMAC for protein purification is a simplified presentation of the various sample elution procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Porath, J., Carlsson, J., Olsson, I., and Belfrage, G. (1975) Metal chelate affinity chromatography, a new approach to protein fractionation.Nature 258, 598,599.

    Article  CAS  Google Scholar 

  2. Porath, J. and Olin, B. (1983) Immobilized metal ion affinity adsorption and immobilized metal ion affinity chromatography of biomaterials. Serum protein affinities for gel-immobilized iron and nickel ions.Biochemistry 22, 1621–1630.

    Article  CAS  Google Scholar 

  3. Monjon, B. and Solms, J. (1987) Group separation of peptides by ligand-exchange chromatography with a Sephadex containing N-(2-pyridyl-methyl)glycine.Anal. Biochem. 160, 88–97.

    Article  CAS  Google Scholar 

  4. Hochuli, E., Dobeli, H., and Schacher, A. (1987) New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues.J. Chromatogr. 411, 177–184.

    Article  CAS  Google Scholar 

  5. Yip, T.-T. and Hutchens T. W. (1989) Development of high-performance immobilized metal affinity chromatography for the separation of synthetic peptides and proteolytic digestion products, inProtein Recognition of Immobilized Ligands. UCLA Symposia on Molecular and Cellular Biology, vol. 80 (Hutchens, T. W., ed.), Alan R. Liss, New York, pp. 45–56.

    Google Scholar 

  6. Yip, T. T., Nakagawa, Y., and Porath, J. (1989) Evaluation of the interaction of peptides with Cu(II), Ni(II), and Zn(II) by high-performance immobilized metal ion affinity chromatography.Anal. Biochem. 183, 159–171.

    Article  CAS  Google Scholar 

  7. Hutchens, T. W. and Yip, T. T. (1990) Differential interaction of peptides and protein surface structures with free metal ions and surface-immobilized metal ions.J. Chromatogr. 500, 531–542.

    Article  CAS  Google Scholar 

  8. Sulkowski, E. (1985) Purification of proteins by IMAC.Trends Biotechnol 3, 1–7.

    Article  CAS  Google Scholar 

  9. Hutchens, T. W. and Li, C. M. (1988) Estrogen receptor interaction with immobilized metals: Differential molecular recognition of Zn2+, Cu2+, and Ni2+ and separation of receptor isoforms.J. Mol. Recog. 1, 80–92.

    Article  CAS  Google Scholar 

  10. Hutchens, T. W., Li, C. M., Sato, Y., and Yip, T.-T. (1989) Multiple DNA-binding estrogen receptor forms resolved by interaction with immobilized metal ions. Identification of a metal-binding domain.J. Biol. Chem. 264, 17,206–17,212.

    CAS  Google Scholar 

  11. Hemdan, E. S., Zhao, Y.-J., Sulkowski, E., and Porath, J. (1989) Surface topography of histidine residues: A facile probe by immobilized metal ion affinity chromatography.Proc. Natl. Acad. Sci. USA 86, 1811–1815.

    Article  CAS  Google Scholar 

  12. Hutchens T. W. and Yip, T.-T. (1991) Metal ligand-induced alterations in the surface structures of lactoferrin and transferrin probed by interaction with immobilized Cu(II) ions.J. Chromatogr. 536, 1–15.

    Article  CAS  Google Scholar 

  13. Mantovaara-Jonsson, T., Pertoft, H., and Porath, J. (1989) Purification of human serum amyloid ccmponent (SAP) by calcium affinity chromatography.Biotechnol. Appl. Biochem. 11, 564–571.

    Google Scholar 

  14. Hutchens, T. W., Nelson, R. W., Li, C. M., and Yip, T.-T. (1992) Synthetic metal binding protein surface domains for metal ion-dependent interaction chromatography. I. Analysis of bound metal ions by matrix-assisted UV laser desorption time-of-flight mass spectrometry.J. Chromatogr. 604, 125–132.

    Article  CAS  Google Scholar 

  15. Hutchens, T. W. and Yip, T.-T. (1992) Immobilization of synthetic metal-binding peptides derived from metal ion transport proteins. II. Building models of bioactive protein surface domain structures.J. Chromatogr. 604, 133–141.

    Article  CAS  Google Scholar 

  16. Hutchens, T. W. and Yip, T.-T. (1990) Protein interactions with immobilized transition metal ions: Quantitative evaluations of variations in affinity and binding capacity.Anal. Biochem. 191, 160–168.

    Article  CAS  Google Scholar 

  17. Nakagawa, Y., Yip, T.-T., Belew, M., and Porath, J. (1988) High performance immobilized metal ion affinity chromatography of peptides: Analytical separation of biologically active synthetic peptides.Anal. Biochem. 168, 75–81.

    Article  CAS  Google Scholar 

  18. Fatiadi A. J. (1987) Affinity chromatography and metal chelate affinity chromatography.CRC Critical Rev. Anal. Chem. 18, 1–44.

    CAS  Google Scholar 

  19. Kagedal, L. (1989) Immobilized metal ion affinity chromatography, inHigh Resolution Protein Purification (Ryden, L. and Jansson, J.-C, eds.), Verlag Chemie Inst, Deerfield Beach, FL, pp. 227–251.

    Google Scholar 

  20. Hutchens, T. W., Li, C. M., Yip, C, Ito K., and Komiya Y. (1990) Covalent modification of Zn(II) binding sites on the estrogen receptor differentially affect steriod-and DNA-binding domains, inProceedings of the 72nd Annual Meeting of the Endocrine Society, Abstract No. 932, p. 257.

  21. Muszynska, G., Zheo., Y.-J., and Porath, J. (1986) Carboxypeptidase A: A model for studying the interaction of proteins with immobilized metal ions.J. Inorg. Biochem. 26, 127–135.

    Article  CAS  Google Scholar 

  22. Yip, T.-T. and Hutchens, T. W. (1991) Metal ion affinity adsorption of a ZN(II)-Transport protein present in maternal plasma during lactation: Structural characterization and identification as histidine-rich glycoprotein.Protein Expression and Purification 2, 355–362.

    Article  CAS  Google Scholar 

  23. Hutchens, T. W., Nelson, R. W., and Yip, T.-T. (1992) Recognition of transition metal ions by peptides: Identification of specific metal-binding peptides in proteolytic digest maps by UV laster desorption time-of-flight spectrometry.FEBS Lett. 296, 99–102.

    Article  CAS  Google Scholar 

  24. Hutchens, T. W., Nelson, R. W., and Yip, T.-T. (1991) Evaluation of peptide-metal ion interactions by UV laser desorption time-of-flight mass spectrometry.J. Mol. Recog. 4, 151–153.

    Article  CAS  Google Scholar 

  25. Hutchens, T. W., Nelson, R. W., Allen, M. H., Li, C. M., and Yip, T.-T. (1992) Peptide metal ion interactions in solution: Detection by laser desorption time-of-flight mass spectrometry and electrospray ionization mass spectrometry.Biol. Mass Spectrom. 21, 151–159.

    Article  CAS  Google Scholar 

  26. Hutchens, T. W. and Yip, T.-T. (1991) Protein interactions with surface-immobilized metal ions: Structure-dependent variations in affinity and binding capacity constant with temperature and urea concentration.J. Inorg. Biochem. 42, 105–118.

    Article  CAS  Google Scholar 

  27. Figueoroa, A., Corradini, C, Feibush, B., and Karger, B. L. (1986) High-performance immobilized metal ion affinity chromatography of proteins on iminodiacetic acid silica-based bonded phases.J. Chromatogr. 371, 335–352.

    Article  Google Scholar 

  28. Hutchens, T. W., Yip, T.-T., and Porath, J. (1988) Protein interaction with immobilized ligands. Quantitative analysis of equilibrium partition data and comparison with analytical affinity chromatographic data using immobilized metal ion adsorbents.Anal. Biochem. 170, 168–182.

    Article  CAS  Google Scholar 

  29. Hutchens, T. W., and Li, C. M. (1990) Ligand-binding properties of estrogen receptor proteins after interaction with surface-immobilized Zn(II) ions: Evidence for localized surface interactions and minimal conformational changes.J. Mol. Recog. 3, 174–179.

    Article  CAS  Google Scholar 

  30. Hutchens, T. W. and Yip, T.-T. (1992) Model protein surface domains for the investigation of metal ion-dependent macromolecular interactions and biospecific metal ion transfer.Methods: A Companion to Methods in Enzymology 4, 79–96.

    Article  CAS  Google Scholar 

  31. Hutchens, T. W. and Yip, T.-T. (1993) Synthetic protein surface domains as bioactive stationary phases: Metal ion-dependent macromolecular recognition and biospecific metal ion transfer, inMolecular Interactions in Bioseparations (Ngo, T. T., ed.) Plenum, New York, pp. 277–312.

    Google Scholar 

  32. Hutchens, T. W. and Yip, T.-T. (1993) New desorption strategies for the mass spectrometric analysis of macromolecules.Rapid Comm. Mass. Spec. 7, 576–580.

    Article  CAS  Google Scholar 

  33. Hutchens, T. W. and Yip, T.-T. (1993) Strategies for automated protein structure analysis by laser desorption/ionization time-of-flight mass spectrometry.Protein Sci. 2 (suppl. 1), 92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yip, TT., Hutchens, T.W. Immobilized metal ion affinity chromatography. Mol Biotechnol 1, 151–164 (1994). https://doi.org/10.1007/BF02921556

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921556

Index Entries

Navigation