Applied Biochemistry and Biotechnology

, Volume 27, Issue 1, pp 55–63 | Cite as

Isolation of acetic acid-tolerant Baker’s yeast variants in a turbidostat

  • T. H. Aarnio
  • M. L. Suihko
  • V. S. Kauppinen


A commercial baker’s yeast was subjected to selection in a continuous turbidostat cultivation with increasing concentration of acetic acid. The final acetic acid content in fresh medium was 0.6% or 0.8% v/v. Two of seven selected variants were stable over 15 sequential shake flask cultivations without selection pressure. After laboratory scale production of baker’s yeast, one of the variants also showed increased acetic acid tolerance in sour dough. The overall raising power (mL CO2/h) in sour dough was improved 36%.

Index Entries

Turbidostat baker’s yeast acetic acid tolerance Saccharomyces cerevisiae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Munson, R. J. (1970), inMethods in Microbiology, Vol. 2., Norris, J. R., and Ribbons, D. W., eds., Academic Press, London and New York, pp. 349–376.Google Scholar
  2. 2.
    Watson, T. G. (1972),J. Appl. Chem. Biotechnol. 22, 229–243.CrossRefGoogle Scholar
  3. 3.
    Harder, W., Kuenen, J. G., and Matin, A. (1977),J. Appl. Bacteriol. 43, 1–24.Google Scholar
  4. 4.
    Dykhuizen, D. E. and Hartl, D. L. (1983),Microbiol. Rev. 47, 150–168.Google Scholar
  5. 5.
    Bryson, V. (1952),Science 116, 48–51.CrossRefGoogle Scholar
  6. 6.
    Brown, S. W. and Oliver, S. G. (1982),Eur. J. Appl. Microbiol. Biotechnol. 16, 119–122.CrossRefGoogle Scholar
  7. 7.
    Korhola, M. (1983), inGene Expression in Yeast, Korhola, M., and Väisänen, E., eds., Foundation for Biotechnical and Industrial Fermentation Research, Helsinki, pp. 231–242.Google Scholar
  8. 8.
    Andreeva, E. A., Blinova, O. P., and Rabotnova, I. L. (1985),Microbiology 54, 1011–1014 (Engl. Translation of Mikrobiologiya).Google Scholar
  9. 9.
    Bolen, P. L. and Slininger, P. J. (1984), inDevelopments in Industrial Micro biology, vol. 25, Nash III, C. H., and Underkofler, L. A., eds., Arlington, VA, pp. 449–457.Google Scholar
  10. 10.
    Kalyuzhin, V. A. (1987),Mikrobiologiya 56, 78–83 (Engl. Transl.).Google Scholar
  11. 11.
    Maesen, TH. J. M. and Lako, E. (1952),Acta Biochim. Biophys. 9, 106, 107.CrossRefGoogle Scholar
  12. 12.
    Samson, F. E., Katz, A. M., and Harris, D. L. (1955),Arch. Biochem. Biophys. 54, 406–423.CrossRefGoogle Scholar
  13. 13.
    Fencl, Z. (1960), inMembrane Transport and Metabolism, Kleinzeller, A., and Kotyk, A., eds., Czechoslovak Academy of Sciences, Prague, pp. 296–304.Google Scholar
  14. 14.
    Suomalainen, H. and Oura, E. (1955),Exp. Cell Res. 9, 355–359.CrossRefGoogle Scholar
  15. 15.
    Suihko, M. L. and Makinen, V. (1984),Food Microbiol. 1, 105–110.Google Scholar
  16. 16.
    Pons, M. N., Rajab, A., and Engasser, J. M. (1986),Appl. Microbiol. Biotech- nol. 24, 193–198.Google Scholar
  17. 17.
    Aarnio, T. H. (1989), Lie. Tech. Thesis, Helsinki University of Technology, Espoo, Finland.Google Scholar
  18. 18.
    Suihko, M. L. and Mäkinen, V. (1981)),Eur. J. Appl. Microbiol. Biotechnol. 13, 113–116.CrossRefGoogle Scholar
  19. 19.
    Aarnio, T. H. and Suihko, M.L. (1990),Appl. Biochem. Biotechnol, submitted. Applied Biochemistry and Biotechnology Volume 27,1991Google Scholar

Copyright information

© Humana Press Inc. 1991

Authors and Affiliations

  • T. H. Aarnio
    • 1
  • M. L. Suihko
    • 1
  • V. S. Kauppinen
    • 1
  1. 1.VTTBiotechnical LaboratoryFinland

Personalised recommendations