Applied Biochemistry and Biotechnology

, Volume 19, Issue 2, pp 189–207 | Cite as

Immobilization of cellulase using polyurethane foam

  • Ajoy C. Chakrabarti
  • Kenneth B. Storey


Cellulase was covalently immobilized using a hydrophilic polyurethane foam (Hypol®FHP 2002). Compared to the free enzyme, immobilized cellulase showed a dramatic decrease (7.5-fold) in the Michaelis constant for carboxymethylcellulose. The immobilized enzyme also had a broader and more basic pH optimum (pH 5.5–6.0), a greater stability under heat-denaturing or liquid nitrogen-freezing conditions, and was relatively more efficient in utilizing insoluble cellulose substrates. High molecular weight compounds (Blue Dextran) could move throughout the foam matrix, indicating permeability to insoluble celluloses; activity could be further improved 2.4-fold after powdering, foams under liquid nitrogen. The improved kinetic and stability features of the immobilized cellulase combined with advantageous properties of the polyurethane foam (resistance to enzymatic degradation, plasticity of shape and size) suggest that this mechanism of cellulase immobilization has high potential for application in the industrial degradation of celluloses.

Index Entries

Cellulase enzyme immobilization polyurethane foam cellulose degradation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Emsley, J. (1987),New Scientist 39, October 8.Google Scholar
  2. 2.
    Cheetham, P. S. J. (1985), inHandbook of Enzyme Biotechnology, 2nd ed. (A. Wiseman, ed.), Harwood, UK.Google Scholar
  3. 3.
    Tjerneld, F., Persson, I., Albertsson, P.-A., and Hahn-Hagerdal, B. (1985),Biotechnol. Bioeng. 27, 1044.CrossRefGoogle Scholar
  4. 4.
    Fadda, M. B., Dessi, M. R., Maurici, R., Rinaldi, A., and Satta, G. (1984),Appl. Microbiol. Biotechnol. 19, 306.CrossRefGoogle Scholar
  5. 5.
    Drioli, E., Iorio, G., Santoro, R., De Rosa, M., Gambacorta, A., and Nichlaus, B. (1982),J. Mol. Catal. 14, 247.CrossRefGoogle Scholar
  6. 6.
    Kumakura, M. and Kaetsu, I. (1982),Biosci. Reports 4, 181.CrossRefGoogle Scholar
  7. 7.
    Lowry, O. H. and Passonneau, J. V. (1972),A Flexible System of Enzymatic Analysis, Academic, NY.Google Scholar
  8. 8.
    Atha, D. H. and Ingham, K. C. (1981),J. Biol. Chem. 256, 12108.Google Scholar
  9. 9.
    Kumakura, M. and Kaetsu, I. (1983),Helv. Chim. Acta. 66, 2778.CrossRefGoogle Scholar
  10. 10.
    Klyosov, A.A. (1986),Appl. Biochem. Biotech. 12, 249.CrossRefGoogle Scholar
  11. 11.
    Woodward, J. and Zachary, G. S. (1982),Enzyme Microb. Technol. 4, 245.CrossRefGoogle Scholar
  12. 12.
    Ryu, D. D. Y., Kim, C., and Mandels, M. (1984),Biotechnol. Bioeng. 26, 488.CrossRefGoogle Scholar
  13. 13.
    Puri, V. P. (1984),Biotechnol. Bioeng. 26, 1219.CrossRefGoogle Scholar
  14. 14.
    Henrissat, B., Driguez, H., Viet, C., and Schulein, M. (1985),Bio/Technology 3, 722.CrossRefGoogle Scholar
  15. 15.
    Pitcher, W. H. (1980), inImmobilized Enzymes for Food Processing (W. H. Pitcher, Jr., ed.), CRC Press, Cleveland, OH.Google Scholar

Copyright information

© Humana Press Inc. 1988

Authors and Affiliations

  • Ajoy C. Chakrabarti
    • 1
  • Kenneth B. Storey
    • 1
  1. 1.Institute of Biochemistry and Department of BiologyCarleton UniversityOttawaCanada

Personalised recommendations