Skip to main content
Log in

Heterogeneous modeling for the alcoholic fermentation process

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 01 October 1989

Abstract

In this paper a heterogeneous model is developed for the alcoholic fermentation process. The model is expressed in terms of intracellular and extracellular concentrations of ethanol and sugar as well as biomass concentration as state variables. The model takes into consideration the floc size and the mass transfer rates of both ethanol and sugar. The intrinsic kinetics of the process used in the model was developed from published data which includes the inhibitory effects of ethanol and cells.

The model development is achieved through comparison with one set of experimental results given by Novak et al. (1). The model is then checked against two other sets of experimental results. The developed model is also used to simulate an industrial fed-batch fermentar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ap :

External surface area of single floc dm2

Atf :

Total surface area of flocs dm2

Dp :

floc diameter dm

Kgs :

Mass transfer coefficient for sugar dm/h

Kgp :

Mass transfer coefficient for ethanol dm/h

Ks :

Saturation constant g/L

Kp :

Inhibition constant g/L

Kp :

Rate constant g/L

n:

Toxic factor dimensionless

P:

Intracellular ethanol concentration g/L

Pb :

Extracellular ethanol concentration g/L

Rp :

Specific rate of ethanol production, g ethanol produced/g dry wt of biomass.h

Rs :

Specific rate of sugar consumption, g sugar consumed/g dry wt of biomass.h

Rx :

Specific growth rate g biomass produced/g dry wt of biomass.h

rp :

Radius of floc dm

S:

Intracellular sugar concentration g/L

Sb :

Extracellular sugar concentration g/L

So :

Sugar concentration at initial condition g/L

t:

Time h

Vb :

Liquid volume of the bulk solution L

Vt :

Total (liquid + flocs) volume L

Vtf :

Total flocs volume L

Vp :

Volume of single floc L

X:

Biomass concentration g dry wt/L

Xm :

Maximum biomass concentration g dry wt/L

Yc :

Yield factor for yeast, g yeast produced/g sugar consumed

Yp :

Yield factor for ethanol, g ethanol prod/g sugar consumed

Greek symbols :

h-1

μm :

Maximum specific growth rate

ρ:

Density of floc g dry wt/wet volume L

References

  1. Novak, M., Strehaiano, P., Moreno, N., and Goma, G. (1981),Biotech. Bioeng.,23, 201–211.

    Article  CAS  Google Scholar 

  2. Bailey, J. E. and Ollis, D. F. (1986),Biochemical Engineering Fundamentals,2nd ed., McGraw Hill.

  3. Ghose, T. K. and Tyagi, R. D. (1979),Biotech. Bioeng.,22, 1387–1400.

    Article  Google Scholar 

  4. Holzberg, I., Finn, R. K., and Stienkraus, K. H. (1967),Biotech. Bioeng.,9, 413–427.

    Article  CAS  Google Scholar 

  5. Aiba, S., Shoda, M., and Nagatani, M. (1968),Biotech. Bioeng.,10, 845–864.

    Article  CAS  Google Scholar 

  6. Egamberdiev, N. B. and Ierusalimskij, N. D. (1969), “In continuous Cultivation of Micro-organism.I,” Malek et al., eds., Academic, Praha, 517–527.

    Google Scholar 

  7. Levenspiel, O. (1980),Biotech. Bioeng.,22, 1671–1687.

    Article  CAS  Google Scholar 

  8. Roels, J. A. and Kossen, N. W. F. (1978),Progress in Industrial Microbiology, H. J. Bull, ed., Elsevier, Amsterdam, 95–203.

    Google Scholar 

  9. Nagodawithana, T. W., Whitt, J. T., and Cutaia, A. J. (1977),J. Am. Soc. Brew. Chem.,35, 179.

    CAS  Google Scholar 

  10. Leao, C. and Van Uden, N. (1982),Biotech. Bioeng.,24, 2601.

    Article  CAS  Google Scholar 

  11. Jobses, I. M. L. and Roels, J. A. (1986),Biotech. Bioeng.,28, 554–563.

    Article  CAS  Google Scholar 

  12. Ghose, T. K. and Tyagi, R. D. (1979),Biotech. Bioeng.,22, 1401–1420.

    Article  Google Scholar 

  13. Franz, B. (1961),Die Nahorung,5, 457.

    Article  CAS  Google Scholar 

  14. Pioronti, F. (1971), Ph.D. thesis, Cornell University, Ithaca, NY.

    Google Scholar 

  15. Egamberdiev, N. B. and Ierusalimskij, N. D. (1968),Microbiologiya,37, 686.

    CAS  Google Scholar 

  16. Burger, M., Hejmova, L., and Kleizeller, A. (1959),Biochem. J.,71, 497.

    Google Scholar 

  17. Ciftci, T., Constantinides, A., and Wang, S. S. (1983),Biotech. Bioeng.,25, 2007–2023.

    Article  CAS  Google Scholar 

  18. Cysewski, G. R. and Wilke, R. (1978),Biotech. Bioeng.,20, 1421.

    Article  CAS  Google Scholar 

  19. Lee, J. M., Pollard, J. F., and Coulman, G. A. (1983),Biotech. Bioeng.,25, 497–511.

    Article  CAS  Google Scholar 

  20. Nagodawithana, T. W. and Steinkrous, K. H. (1976),J. Appl. Environ. Microbiol.,31, 158.

    CAS  Google Scholar 

  21. Thomas, D. S. and Rose, A. H. (1979),Arch. Microbiol.,122, 49.

    Article  CAS  Google Scholar 

  22. Beavan, M. J., Charpentier, C., and Rose, A. H. (1982),J. Gen. Microbiol,128, 1447.

    Google Scholar 

  23. Navarro, J. M. and Durand, G. (1978),Ann. Microbiol. (Inst. Pasteur),129B, 215.

    CAS  Google Scholar 

  24. Navarro, J. M., Scherian, A. F., Weiland, P., and Lafferty, R. M. (1981), Paper presented at the 7th International Specialized Symposium on Yeast, Valencia, Spain.

    Google Scholar 

  25. Panchal, J. and Stewart, G. G. (1980),J. Inst. Brew.,86, 207.

    CAS  Google Scholar 

  26. Strehaiano, P. (1973), These Dr. Ing.,Toulouse, France.

  27. Guijarro, J. M. and Lagunas, R. (1984),J. Bacteriol.,160, 3, 874–878.

    Google Scholar 

  28. Benitez, T., Del Castillo, L., Aguilera, A., Conde, J., and Cerda-Omeda, E. (1983),Appl. Environ. Microbiol.,45, 1429–1439.

    CAS  Google Scholar 

  29. Aris, R. (1975),The Mathematical Theory of Diffusion and Reaction in Permeable Catalyst, Oxford Univ. Press, vols. 1 and 2.

  30. Dombek, K. M. and Ingram, L. O. (1983),Abstr. Ann. Meet. Soc. Microbiol.,83, meeting 241.

    Google Scholar 

  31. Carey, V. and Ingram, L. O. (1983),J. Bact.,154, 1291.

    CAS  Google Scholar 

  32. Bajpai, P. and Margaritis, A. (1986),Biotech. Bioeng.,28, 283–287.

    Article  CAS  Google Scholar 

  33. Mill, P. J. (1964),J. Gen. Microbiol,35, 61.

    CAS  Google Scholar 

  34. Atkinson, B. and UR-Rahman, F. (1979),Biotech. Bioeng.,21, 221–251.

    Article  CAS  Google Scholar 

  35. Stein, W. D. (1967),The Movement of Molecules Across Cell Membranes, Academic, NY, London.

    Google Scholar 

  36. Weeks, M. G., Munro, P. A., and Speeding, P. L. (1983),Biotech. Bioeng.,25, 687–698.

    Article  CAS  Google Scholar 

  37. Weeks, M. G., Munro, P. A., and Speeding, P. L. (1983),Biotech. Bioeng.,25, 699.

    Article  CAS  Google Scholar 

  38. Atkinson, B. and Daoud, I. S. (1976),Advances in Biochemical Engng.,4, T. K. Ghosh, A. Fiechter, N. Blakeborough, eds., Springler-Verlag, Berlin.

    Google Scholar 

  39. Eddy, A. A. (1955),J. Inst. Brew.,61, 313.

    Google Scholar 

  40. Baker, D. A. and Kirsop, B. H. (1972),J. Inst. Brew.,78, 454.

    CAS  Google Scholar 

  41. Rainbow, C. (1966),Process Biochem.,1, 489.

    CAS  Google Scholar 

  42. Jones, S. T., Korus, R., Adamssu, W., and Hemisch, R. (1984),Biotech. Bioeng., 742–747.

  43. Ibrahim, G. (1986),The Analysis and Design of Fermentors for the Production of Alcohol, Ph.D. thesis, Chem. Engng. Dept., Cairo University, Egypt.

    Google Scholar 

  44. Virgillio, L. and Ferreiva, H. G. (1983),Biotech. Bioeng.,25, 2263–2269.

    Article  Google Scholar 

  45. Luong, J. H. T. (1985),Biotech. Bioeng.,27, 280–285.

    Article  CAS  Google Scholar 

  46. Del Rosario, E. J., Lee, J., and Rogers, P. L. (1979),Biotech. Bioeng.,21, 1477–1482.

    Article  Google Scholar 

  47. Süman, R. W. (1984),Biotech. Bioeng.,26, 247–251.

    Article  Google Scholar 

  48. Jobses, I. (1986), Ph.D. thesis, Delft Univ. of Technology, The Netherlands, p. 56.

    Google Scholar 

  49. Atkinson, B. (1971),Biochemical Reaction Engineering in Chem. Eng., vol. 3, Coulson, J. M. and Richardson, J. F., eds., Pergamon, Oxford, p. 347.

    Google Scholar 

  50. Gancer, M. A. and Mutharsan, R. (1983),Biotech. Bioeng.,25, 2243–2262.

    Article  Google Scholar 

  51. Nagshima, M., Azuma, M., Noguchi, S., Inzuka, K., and Samejima, H. (1984),Biotech. Bioeng.,26, 992–997.

    Article  Google Scholar 

  52. San, K. Y. and Stephanopoulos, G. (1984),Biotech. Bioeng.,26, 1261–1264.

    Article  CAS  Google Scholar 

  53. Elnashaie, S. S. E. H. and Abdel Hakim, N. (in press),Computers & Chem. Engng.

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from, the Chem. Engng. Dept., College of Engng., Cairo Univ., Egypt

An erratum to this article is available at http://dx.doi.org/10.1007/BF02922703.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elnashaie, S.S.E.H., Ibrahim, G. Heterogeneous modeling for the alcoholic fermentation process. Appl Biochem Biotechnol 19, 71–101 (1988). https://doi.org/10.1007/BF02921466

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921466

Index Entries

Navigation