Skip to main content
Log in

Effect of temperature cycling on the activity and productivity of immobilized β-galactosidase in a thermally reversible hydrogel bead reactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The enzyme β-galactosidase has been immobilized within thermally reversible hydrogel beads that exhibit LCST (lower critical solution temperature) behavior. The hydrogel beads containing the immobilized enzymes swell and expand below the LCST and deswell and shrink above the LCST. This behavior is reversible. The enzyme was physically entrapped in a crosslinked hydrogel of a copolymer of N-isopropylacrylamide (NIPAAm) and acrylamide (AAm), and formed as beads in an inverse suspension polymerization. The beads were placed in a packed bed column reactor which was operated in a continuous, single pass mode, either isothermally at 30 or 35°C, or with temperature cycling between 30 and 35°C. The thermal cycling significantly enhanced overall reactor enzyme activity relative to isothermal operation at either the higher or lower temperature. It is postulated that mass transfer rates within the hydrogel beads are greatly enhanced by the movement of water in and out of the beads during the expansion or collapse of the polymer chain network as temperature is cycled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zaborsky, O. R. (1973),Immobilized Enzymes, CRC Press, Cleveland, OH.

    Google Scholar 

  2. Weetall, H. H., ed., (1975),Immobilized Enzymes, Antigens, Antibodies, and Peptides, Preparation and Characterization, Dekker, NY.

    Google Scholar 

  3. Wingard, L. Jr., Katchalski-Katzir, E., and Goldstein, L. (1976),Immobilized Enzyme Principles, Academic Press, N.Y.

    Google Scholar 

  4. Lashkin, A. I., ed. (1985),Enzymes and Immobilized Cells in Biotechnology, Benjamin/Cummings Publ., Menlo Park, CA.

    Google Scholar 

  5. Lashkin, A. I., Mosbach, K., Thomas, D., and Wingard, L. Jr., eds. (1987),Enzyme Engineering 8, Ann. NY Acad. Sci., 501.

  6. Hicks, G. P. and Updike, S. J. (1966),Anal. Chem.,38, 726.

    Article  CAS  Google Scholar 

  7. Hoffman, A. S., Schmer, G., Harris, C., and Kraft, W. (1972),Trans. Amer. Soc. Artif. Internal Organs,18, 10.

    CAS  Google Scholar 

  8. Engasser, J. M., and Horvath, C. (1974),Biochem.,13, 3845, 3849, 3855; alsoDiffusion and Kinetics with Immobilized Enzymes, chapter in Wingard, L. Jr., et al. (reference 3 above).

    Article  CAS  Google Scholar 

  9. Heskins, M., and Guillet, J. E. (1986),J. Macromol. Sci.-Chem.,A28, 1441–1455.

    Google Scholar 

  10. Taylor, L. D., and Cerankowski, L. D. (1975),J. Polym. Sci. (Polymer Chem.),13, 2551–2570.

    Article  CAS  Google Scholar 

  11. Priest, J. H., Murray, S. L., Nelson, R. G., and Hoffman, A. S. (1987), inACS Symposium Series 350, “Reversible Polymeric Gels and Related Systems,” Russo, P., ed., ACS, Washington, DC, pp. 255–264.

    Google Scholar 

  12. Tanaka, T. (1981),Sci. Amer.,224, 124–138.

    Article  Google Scholar 

  13. Hoffman, A. S., Afrassiabi, A., and Dong, L. C. (1986),J. Contr. Rel,4, 213–222.

    Article  CAS  Google Scholar 

  14. Dong, L. and Hoffman, A. S. (1986),J. Contr. Rel.,4, 223–227.

    Article  CAS  Google Scholar 

  15. Dong, L. and Hoffman, A. S. (1987), inACS Symposium Series 350, “Reversible Polymeric Gels and Related Systems,” Russo, P., ed., ACS, Washington, DC, pp. 236–244.

    Google Scholar 

  16. Zhong, Y. P., Dong, L. C, and Hoffman, A. S. (April 21–25, 1988),Proceedings of Third World Biomaterials Congress, Kyoto, Japan.

  17. Husted, G. O., Richardson, T., and Olson, N. F. (1973),J. Dairy Sci.,56, 118.

    Google Scholar 

  18. Weetall, H. H., Havewala, N. Pitcher, W. H., Detar, C. C., Vann, W. P., and Yaverbaum, S. (1974),Biotechnol. Bioeng.,16, 295.

    Article  CAS  Google Scholar 

  19. Hoffman, A. S. (1987),J. Contr. Rel,6, 297–305.

    Article  CAS  Google Scholar 

  20. Hoffman, A. S., and Monji, N., patents pending.

  21. Bae, Y. H., Okano, T., Hsu, R. and Kim, S. W.,Trans 3rd World Biomaterials Congress Kyoto, Japan, April 21–25, 1988, p. 238.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, T.G., Hoffman, A.S. Effect of temperature cycling on the activity and productivity of immobilized β-galactosidase in a thermally reversible hydrogel bead reactor. Appl Biochem Biotechnol 19, 1–9 (1988). https://doi.org/10.1007/BF02921460

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921460

Index Entries

Navigation