Skip to main content
Log in

De Rham cohomology of manifolds containing the points of infinite type, and Sobolev estimates for the\(\bar \partial - Neumann\) problem

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We consider smooth bounded pseudoconvex domains Ω in Cn whose boundary points of infinite type are contained in a smooth submanifoldM (with or without boundary) of the boundary having its (real) tangent space at each point contained in the null space of the Levi form ofbΩ at the point. (In particular, complex submanifolds satisfy this condition.) We consider a certain one-form α onbΩ and show that it represents a De Rham cohomology class on submanifolds of the kind described. We prove that if α represents the trivial cohomology class onM, then the Bergman projection and the\(\bar \partial - Neumann\) operator on Ω are continuous in Sobolev norms. This happens, in particular, ifM has trivial first De Rham cohomology, for instance, ifM is simply connected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrett, David E. Regularity of the Bergman projection and local geometry of domains.Duke Math. J. 53, 333–342 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  2. Barrett, David E. Behavior of the Bergman projection on the Diederich-Fornæss worm.Acta Math. 168, 1–10 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrett, David E., and Fornæss, John Erik. On the smoothness of Levi-foliations.Publications Matematiques 32, 171–177 (1988).

    MATH  Google Scholar 

  4. Bedford, Eric, and Fornæss, John Erik. Domains with pseudoconvex neighborhood systems.Invent. Math. 47, 1–27 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  5. Bedford, Eric, and Fornæss, John Erik. Complex manifolds in pseudoconvex boundaries.Duke Math. J. 48, 279–288 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  6. Behrens, Mechthild. Plurisubharmonische definierende Funktionen pseudokonvexer Gebiete.Schriftenreihe Math. Inst. Univ. Münster, Ser. 2, Vol. 31 (1984).

  7. Behrens, Mechthild. Plurisubharmonic defining functions of weakly pseudoconvex domains in C2.Math. Ann. 270, 285–296 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  8. Bell, Steven R. Biholomorphic mappings and the\(\bar \partial - problem\).Ann. of Math. 114, 103–113 (1981).

    Article  MathSciNet  Google Scholar 

  9. Bell, Steven, and Catlin, David. Boundary regularity of proper holomorphic mappings.Duke Math. J. 49, 385–396 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  10. Boas, Harold P., and Straube, Emil J. Complete Hartogs domains in C2 have regular Bergman and Szegő projections.Math. Z.201, 441–454 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  11. Boas, Harold P., and Straube, Emil J. Equivalence of regularity for the\(\bar \partial - Neumann\) operator and the Bergman projection.Manuscripta Math. 67, 25–33 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  12. Boas, Harold P., and Straube, Emil J. Sobolev estimates for the\(\bar \partial - Neumann\) operator on domains in Cn admitting a defining function that is plurisubharmonic on the boundary.Math. Z.206, 81–88 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  13. Boas, Harold P., and Straube, Emil J. The Bergman projection on Hartogs domains in C2.Trans. Amer. Math. Soc. 331, 529–540 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  14. Catlin, David. Necessary conditions for subellipticity and hypoellipticity for the\(\bar \partial - Neumann\) problem on pseudoconvex domains.Recent Developments in Several Complex Variables, Annals of Math. Studies, Number 100, pp. 93–100. Princeton University Press, Princeton, NJ, 1981.

    Google Scholar 

  15. Catlin, David. Boundary invariants of pseudoconvex domains.Annals of Math. 120, 529–586 (1984).

    Article  MathSciNet  Google Scholar 

  16. Catlin, David. Global regularity of the\(\bar \partial - Neumann\) problem.Proc. Symp. Pure Math. 41, 39–49 (1984). American Mathematical Society, Providence, RI.

    MathSciNet  Google Scholar 

  17. Catlin, David. Subelliptic estimates for the\(\bar \partial - Neumann\) problem on pseudoconvex domains.Annals of Math. 126, 131–191 (1987).

    Article  MathSciNet  Google Scholar 

  18. D’Angelo, John P. Finite type conditions for real hypersurfaces.J. Diff. Geom. 14, 59–66 (1979).

    MathSciNet  MATH  Google Scholar 

  19. D’Angelo, John P. Real hypersurfaces, orders of contact, and applications.Ann. of Math. 115, 615–637 (1982).

    Article  MathSciNet  Google Scholar 

  20. D’Angelo, John P. Iterated commutators and derivatives of the Levi form.Complex Analysis, Lecture Notes in Mathematics, Vol. 1268, pp. 103–110. Springer, New York, 1987.

    Google Scholar 

  21. Derridj, M. Domaines à estimation maximale.Math. Z. 208, 71–88 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  22. Derridj, M., and Tartakoff, D. S. On the global real analyticity of solutions to the\(\bar \partial - Neumann\) problem.Comm. Partial Differential Equations 1, 401–435 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  23. Diederich, Klas, and Fornæss, John Erik. Pseudoconvex domains: An example with nontrivial Nebenhülle.Math. Ann. 225, 275–292 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  24. Diederich, Klas, and Fornæss, John Erik. Boundary regularity of proper holomorphic mappings.Invent. Math. 67, 363–384 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  25. Diederich, Klas, and Pflug, Peter. Necessary conditions for hypoellipticity of the\(\bar \partial - problem\).Recent Developments in Several Complex Variables, Annals of Math. Studies, Number 100, pp. 151–154. Princeton University Press, Princeton, NJ, 1981.

    Google Scholar 

  26. Folland, G. B., and Kohn, J. J.The Neumann Problem for the Cauchy-Riemann Complex, Annals of Math. Studies, Vol. 75. Princeton University Press, Princeton, NJ, 1972.

    Google Scholar 

  27. Fornæss, John Erik. Plurisubharmonic defining functions.Pacific J. Math. 80, 381–388 (1979).

    MathSciNet  MATH  Google Scholar 

  28. Greub, Werner, Halperin, Stephen, and Vanstone, Ray.Connections, Curvature, and Cohomology, Vol. 1. Academic Press, New York, 1972.

    Book  MATH  Google Scholar 

  29. Hirsch, Morris W.Differential Topology. Springer, New York, 1976.

    MATH  Google Scholar 

  30. Kohn, J. J. Boundary behavior of\(\bar \partial \) on weakly pseudo-convex manifolds of dimension two.J. Diff. Geom. 6, 523–542 (1972).

    MathSciNet  MATH  Google Scholar 

  31. Kohn, J. J. Global regularity for\(\bar \partial \) on weakly pseudo-convex manifolds.Trans. Amer. Math. Soc. 181, 273–292 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  32. Kohn, J. J. Subellipticity of the\(\bar \partial - Neumann\) problem on pseudoconvex domains: Sufficient conditions.Acta Math. 142, 79–121 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  33. Kohn, J. J. A survey of the\(\bar \partial - Neumann\) problem.Proc. Symp. Pure Math. 41, 137–145 (1984). American Mathematical Society, Providence, RI.

    MathSciNet  Google Scholar 

  34. Krantz, Steven G.Function Theory of Several Complex Variables, 2nd ed. Wadsworth & Brooks/Cole, Pacific Grove, CA, 1992.

    MATH  Google Scholar 

  35. Range, R. Michael. The\(\bar \partial - Neumann\) operator on the unit ball in Cn.Math. Ann. 266, 449–456 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  36. Range, R. Michael.Holomorphic Functions and Integral Representations in Several Complex Variables. Springer, New York, 1986.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors were partially supported by National Science Foundation Grant Number DMS-9002541.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boas, H.P., Straube, E.J. De Rham cohomology of manifolds containing the points of infinite type, and Sobolev estimates for the\(\bar \partial - Neumann\) problem. J Geom Anal 3, 225–235 (1993). https://doi.org/10.1007/BF02921391

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921391

Math Subject Classification

Key Words and Phrases

Navigation