Skip to main content
Log in

Proline metabolic pathways in calli fromLycopersicon esculentum andL. pennellii under salt stress

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

The enzyme activities of the proline metabolic pathways were determined in control and satt-treated (140 M NaCl) calli derived from cotyledons of the domestic saltsensitive tomatoLycopersicon esculentum and the wild salt-tolerantL. pennellii. Glutamate, glutamine, asparagine, and aspartate levels increased in both genotypes under salt stress, while proline accumulation increased markedly only in the salt sensitive tomato. Activity of glutamine synthetase (GS) decreased in the salt-treated calli of the domestic species, whereas both NADH- and NADPH-glutamate synthase (GOGAT) activities increased; GS and NADPH-GOGAT decreased together in the salinized calli of the wild species. Decreasing ornithine levels were found due to NaCl in both tomato populations, while ornithine transaminase (OT) decreased in the wild type only. Increasing NADPH-Δ-pyrroline-5-carboxylate reductase (P5CR) and decreasing proline oxidase (Pro oxi) occurred in the salinized calli of the wild type. Conversely, Pro oxi and proline dehydrogenase (Pro dH) decreased highly in the salinized calli of the domestic population, while no significant changes in P5CR were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCPIP:

dichlorophenol 2,6 indophenol

DTT:

dithiotritol

FAD:

flavin adenine dinucleotide

GOGAT:

glutamate synthase

GS:

glutamine synthetase

OT:

ornithine transaminase

P5CR:

Δ-pyrroline-5-carboxylate reductase

Pro dH:

proline dehydrogenase

Pro oxi:

proline oxidase

RGR:

relative growth rate

References

  • Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water stress studies.— Plant Soil39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Bellinger, Y., Larher, F.: Proline accumulation in higher plants: a redox buffer?.—Plant Physiol. (Life Sci. Adv.)6: 23–27, 1987.

    Google Scholar 

  • Boggess, S.F., Aspinall, D., Paleg, L.G.: Stress metabolism IX. The significance of end-products inhibition of proline biosynthesis and compartmentation in relation to stress induced proline accumulation.—Aust. J. Plant Physiol.3: 513–526, 1976a.

    CAS  Google Scholar 

  • Boggess, S.F., Stewart, C.R., Aspinall, D., Paleg, L.G.: Effect of water stress on proline synthesis from radioactive precursors.—Plant Physiol.58: 398–401, 1976b.

    PubMed  CAS  Google Scholar 

  • Bourgeais-Chaillou, P., Guerrier, G.: Salt-responses inLycopersicon esculentum calli and whole plants.—J. Plant Physiol.140: 494–501, 1992.

    CAS  Google Scholar 

  • Charest, C., Phan, C.T.: Cold acclimation of wheat: properties of enzymes involved in proline metabolism.—Physiol. Plant.80: 159–168, 1990.

    Article  CAS  Google Scholar 

  • Delaunay, A.J., Verna, D.P.S.: A soybean Δ-pyrroline-5-carboxylate reductase gene was isolated by functional complementation inEscherichia coli and is found to be osmoregulated.—Mol. gen. Genet.221: 299–305, 1990.

    Google Scholar 

  • Golan-Goldhirsch, A., Hankamer, B., Lips, S.H.: Hydroxyproline and proline content of cell walls of sunflower, peanut and cotton grown under salt stress.—Plant. Sci.69: 27–32, 1990.

    Article  Google Scholar 

  • Golan-Goldhirsch, A., Hankamer, B., Lips, S.H.: Hydroxyproline and proline content of cell walls of sunflower, peanut and cotton grown under salt stress.—Plant Sci.69: 27–32, 1990.

    Article  Google Scholar 

  • Huang, A.H., Cavalieri, A.J.: Proline oxidase and water stress induced proline accumulation in spinach leaves.—Plant Physiol.63: 531–535, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Laliberté, G., Hellebust, J.A.: Pyrroline-5-carboxylate reductase inChorella autotrophica andC. saccharophila in relation to osmoregulation.—Plant Physiol.91: 917–923, 1989.

    PubMed  Google Scholar 

  • LaRosa, P.C., Rhodes, D., Rhodes, J.C., Bressan, R.A., Csonkas, L.N.: Elevated accumulation of proline in NaCl-adapted tobacco cells is not due to altered pyrroline-5-carboxylate reductase.—Plant Physiol.96: 245–250, 1991.

    PubMed  CAS  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent.—J. biol. Chem.193: 265–275, 1951.

    PubMed  CAS  Google Scholar 

  • Munns, R., Termaat, A.: Whole plant response to salinity.—Aust. J. Plant Physiol.13: 143–160, 1986.

    Google Scholar 

  • Nash, D., Paleg, L.G., Wiskich, J.T.: Effect of proline, betaine and some other solutes on the heat stability of mitochondrial enzymes.—Aust. J. Plant Physiol.9: 47–54, 1982.

    Article  CAS  Google Scholar 

  • Noguchi, M., Koiwai, A., Tanaki, E.: Studies on nitrogen metabolism in tobacco plant.—Agr. Biol. Chem.30: 452–456, 1966.

    CAS  Google Scholar 

  • Rayapati, P.J., Stewart, C.R., Hack, E.: Pyrroline-5-carboxylate reductase is in pea leaf chloroplasts. —Plant Physiol.91: 581–586, 1989.

    PubMed  CAS  Google Scholar 

  • Rhodes, D., Handa, S., Bressan, R.A.: Metabolic changes associated with adaptation of plant cells to water stress.—Plant Physiol.82: 890–903, 1986.

    PubMed  CAS  Google Scholar 

  • Stewart, C.R., Boggess, S.F.: The effect of wilting on the conversion of arginine, ornithine and glutamate to proline in bean leaves.—Plant Sci. Lett.8: 147–153, 1977.

    Article  CAS  Google Scholar 

  • Stewart, C.R., Boggess, S.F., Aspinall, D., Paleg, L.G.: Inhibition of proline oxidase by water stress.—Plant Physiol.59: 930–932, 1977.

    PubMed  CAS  Google Scholar 

  • Steward, G.R., Larher, F.: Accumulation of amino acids and related compounds in relation to environmental stress.—In: Miflin, B.J. (ed.): Biochemistry of Plants. A Comprehensive Treatise. Vol. 5. Amino Acids and Derivatives. Pp. 609–632. Academic Press, New York 1980.

    Google Scholar 

  • Tal, M., Katz, A.: Salt tolerance in the wild relatives of the cultivated tomato: the effect of proline on the growth of callus tissue ofLycopersicon esculentum andL. peruvianum under salt and water stress.—Z. Pflanzenphysiol.98: 283–288, 1980.

    CAS  Google Scholar 

  • Tal, M., Katz, A., Heikin, H., Dehan, K.: Salt tolerance in the wild relatives of the cultivated tomato: proline accumulation inLycopersicon esculentum, L. peruvianum andL. pennellii treated with NaCl and PEG.—New Phytol.82: 349–355, 1979.

    Article  CAS  Google Scholar 

  • Treichel, S.: The influence of NaCl on pyrroline-5 carboxylate reductase in proline-accumulating cell suspension cultures ofMesembryanthemum nodiflorum and other halophytes.—Physiol. Plant.67: 173–181, 1986.

    Article  CAS  Google Scholar 

  • Venekamp, J.H.: Regulation of cytosol acidity in plants under conditions of drought—Physiol. Plant.76: 112–117, 1989.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

communicated by I. MACHÁČKOVÁ

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rus-Alvarez, A., Guerrier, G. Proline metabolic pathways in calli fromLycopersicon esculentum andL. pennellii under salt stress. Biol Plant 36, 277–284 (1994). https://doi.org/10.1007/BF02921101

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921101

Keywords

Navigation