Skip to main content
Log in

Photobioreactor culture of photosynthetic soybean cells

Growth and Biomass Characteristics

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Photosynthetic suspension cultures of higher plants offer an alternative approach to biomass production, potentially yielding cellulosic material and protein on a continuous year-round basis. A bench-top hybrid photobioreactor was developed to study photomixotrophic and photoautotrophic growth of Glycine max as a model system. Maximum biomass doubling times for photomixotrophic and photoautotrophic growth were 1.87 and 3.92 d, respectively. The presence of exogenous sugars resulted in photomixotrophic growth, reduced chlorophyll levels, and a reduction in photosynthetically-evolved oxygen. Depletion of carbohydrates from the medium coincided with the beginning of stationary phase and an increase in oxygen evolution by the cells. A second growth phase, prolonging cell viability, could be initiated by increasing the carbon dioxide from 2 to 5%, just before the onset of stationary phase. Biomass from bioreactor cultured cells proved resistant to enzymatic attack without pretreatment. Composition of the biomass was 7.8% lignin, 20.7% α-cellulose, 23% hemicellulose, 5.5% starch, 14.5% protein and 6.5% nucleic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldstein, W. E. (1983),Biochemical Engineering, Constantinides, A. and Vieth, W. R., eds., New York Academy of Science, p. 394.

  2. Martin, S. M. (1980),Plant Tissue Culture As a Source of Biochemicals, Staba, E. J. ed., CRC Press, Boca Raton, FL, p. 150.

    Google Scholar 

  3. Spier, R. E. and Fowler M. W. (1984),Comprehensive Biotechnology, Moo-Young, M., ed., Pergamon Press, New York, p. 302.

    Google Scholar 

  4. Horn, M. E., Sherrard, J. H., and Widholm, J. M. (1983),Plant Physiol. 72, 426–429.

    CAS  Google Scholar 

  5. Rogers, S. M. D. and Widholm, J. M. (1988),Plant Sci. 56, 69–74.

    Article  CAS  Google Scholar 

  6. Treat, W. J., Engler, C. R., and Soltes, E. J. (1989),Biotech. Bioeng. 34, 1191–1202.

    Article  CAS  Google Scholar 

  7. Widholm, J. M. (1972),Stain Technol. 47, 189–194.

    CAS  Google Scholar 

  8. Hipkins, M. F. and Baker, N. R. (1986),Photosynthesis: energy transduction, a practical aproach, IRL Press, Oxford, pp. 62–65.

    Google Scholar 

  9. Cobb, B. G. and Hannah, L. C. (1983),Theor. Appl. Genet. 65, 47–51.

    Article  Google Scholar 

  10. Kohl, H., Jeblick, W., Poten, F., Blaschek, W., Kaufs, H. (1985),Plant Physiol. 77, 544–551.

    Google Scholar 

  11. Miller, G. L. (1959),Anal. Chem. 31, 426.

    Article  CAS  Google Scholar 

  12. TAPPI Test Methods, Vol. 1 Method T222, Technology Park, Atlanta, GA.

  13. Jayme, G. (1942),Cellulosechem. 20, 43–46.

    CAS  Google Scholar 

  14. Wise, L. E., Murphy, M., and D’Addieco, A. A. (1946),Paper Trade J. 122, 35–39.

    CAS  Google Scholar 

  15. Spilatro, S. R. and Anderson, J. M. (1988),Plant Physiol. 88, 862–868.

    CAS  Google Scholar 

  16. Kaul, K. and Sabharwal, P. S. (1971),Plant Physiol. 47, 691–695.

    CAS  Google Scholar 

  17. Seeni, S. and Gnanum, A. (1982),Plant Physiol. 70, 823–826.

    CAS  Google Scholar 

  18. Gathercole, R. W. E., Mansfield, K. J., and Street, H. E. (1976),Physiol. Plant 37, 213–217.

    Article  CAS  Google Scholar 

  19. Kato, K., Shiozawa, Y., Yamada, A., Nishida, K., and Noguchi, M. (1972),Agric. Biol. Chem. 36, 899–904.

    CAS  Google Scholar 

  20. Wilson, G. (1978),Frontiers of Plant Tissue Culture, Thorpe, T. A., ed., The International Ass. Plant Tissue Culture, University of Alberta, Canada, p. 169.

    Google Scholar 

  21. Treat, W. J., Engler, C. R., and Soltes, E. J. (1988),Biotechnol. Techniques. 1, 235–238.

    Article  Google Scholar 

  22. Stanzel, M., Sjolund, R. D., and Komor, E. (1988),Planta 174, 210–216.

    Article  Google Scholar 

  23. Stanzel, M., Sjolund, R. D., and Komor, E. (1988),Planta 174, 201–209.

    Article  CAS  Google Scholar 

  24. Tanaka, H. (1981),Biotechnol. Bioeng. 23, 1203–1218.

    Article  Google Scholar 

  25. Scragg, A. H., Allan, E. J., and Leckie, F. (1988),Enzyme Microb. Technol. 10, 316–367.

    Google Scholar 

  26. Tanaka, H., Semba, H., Jitsufuchi, T., and Harada, H. (1988),Biotechnology Letters 10, 485–490.

    Article  Google Scholar 

  27. Detroy, R. W. (1981),Organic Chemicals from Biomass, Goldstein, I. S., ed., CRC Press, Boca Raton, FL, p. 27.

    Google Scholar 

  28. Takeuchi, Y. and Komamine, A. (1978),Physiol. Plant 42, 21–28.

    Article  CAS  Google Scholar 

  29. Giles, N. R. and Hall, M. A. (1977),New Phytol. 78, 1–15.

    Article  Google Scholar 

  30. Labavitch, J. M. and Ray, P. M. (1974),Plant Physiol. 54, 499–502.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Treat, W.J., Castillon, J. & Soltes, E.J. Photobioreactor culture of photosynthetic soybean cells. Appl Biochem Biotechnol 24, 497–510 (1990). https://doi.org/10.1007/BF02920273

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02920273

Index Entries

Navigation