Skip to main content
Log in

Utilization of microbially solubilized coal

Preliminary studies on anaerobic conversion scientific note

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The solubilization of low-ranked coals by fungi, such as Paecilomyces, in defined submerged culture systems has been demonstrated. Current efforts focus on the conversion of the aerobically-solubilized coal into less oxidized products. Anaerobic methanogenic consortia have been developed that can remain active and viable in the presence of the aqueous coal product or vanillin, a coal model compound. The results suggest that a methanogenic consortium was able to produce methane and carbon dioxide from the product of coal biosolubilization by Paecilomyces as a sole carbon source. Work continues on the development of cultures able to convert the aqueous coal product and its various fractions into methane or fuel alcohols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohen, M. S. and Gabrielle, P. O. (1982),Appl. Environ. Microbiol. 44, 23–27.

    CAS  Google Scholar 

  2. Scott, C. D., Strandberg, G. W., and Lewis, S. N. (1986),Biotechnol. Prog. 2, 131–139.

    CAS  Google Scholar 

  3. Ward, B. (1985),System. Appl. Microbiol. 6, 236–238.

    Google Scholar 

  4. Gupta, R. K., Spiker, J. K., and Crawford, D. L. (1988),Can. J. Microbiol. 34, 667–674.

    Article  CAS  Google Scholar 

  5. Strandberg, G. W. and Lewis, S. N. (1988),Appl. Biochem. Biotechnol. 18, 355–362.

    CAS  Google Scholar 

  6. Maka, A., Srivastava, V. J., Kilbane, J. J., II, and Akim, C. (1989),Appl. Biochem. Biotech. 20, 715–730.

    Google Scholar 

  7. Faison, B. D. and Lewis, S. N. (1989),Appl. Biochem. Biotechnol. 20, 743–752.

    Google Scholar 

  8. Strandberg, G. W. and Lewis, S. N. (1987),J. Indus. Microbiol. 1, 371–375.

    Article  CAS  Google Scholar 

  9. Quigley, D. R., Ward, B., Crawford, D. L., Hatcher, H. J., and Dugan, P. R. (1989),Appl. Biochem. Biotech. 20, 753–764.

    Article  Google Scholar 

  10. Faison, B. D., Woodward, C. A., and Bean, R. M. (1990),Appl. Biochem. Biotechnol. this volume.

  11. Sleat, R. and Robinson, J. P. (1984),J. Appl. Bacteriol. 57, 381–394.

    CAS  Google Scholar 

  12. Evans, W. C. and Fuchs, G. (1988),Ann. Rev. Microbiol. 42, 289–317.

    Article  CAS  Google Scholar 

  13. Healy, J. B., Jr. and Young, L. Y. (1979),Appl. Environ. Microbiol. 38, 84–89.

    CAS  Google Scholar 

  14. Ferry, J. G., and Wolfe, R. S. (1976),Arch. Microbiol. 107, 33–40.

    Article  CAS  Google Scholar 

  15. Young, L. Y. (1984),Microbiol Ser. 13, 487–523.

    CAS  Google Scholar 

  16. Strandberg, G. W. and Lewis, S. N. (1986),Biotechnol. Bioeng. Symp. Ser. 17, 153–158.

    CAS  Google Scholar 

  17. Faison, B. D. and Lewis, S. N. (1990),Resources, Conserv. and Recycl. in press.

  18. do Nascimento, H. C. G., Lee, K. I., Cho, S.-Y., Wang, W. C., Chen, J. R., and Yen, T. F. (1987),Process Biochem. 22, 24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davison, B.H., Nicklaus, D.M., Misra, A. et al. Utilization of microbially solubilized coal. Appl Biochem Biotechnol 24, 447–456 (1990). https://doi.org/10.1007/BF02920269

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02920269

Index Entries

Navigation