Skip to main content
Log in

Development of a systems analysis approach for resolving the structure of biodegrading soil systems

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An experimental and mathematical method is developed for the microbial systems analysis of polyaromatic hydrocarbon (PAH)-degrading mixed cultures in PAH-contaminated “town gas” soil systems. Frequency response is the primary experimental and data analysis tool used to probe the structure of these complicated systems. The objective is to provide a fundamental protocol for evaluating the performance of specific mixed microbial cultures on specific soil systems by elucidating the salient system variables and their interactions. Two well-described reactor systems, a constant volume stirred tank reactor (CSTR) and a plug flow differential volume reactor, are used in order to remove performance effects that are related to reactor type as opposed to system structure. These two reactor systems are well-defined systems that can be described mathematically and represent the two extremes of one potentially important system variable, macroscopic mass transfer. The experimental and mathematical structure of the protocol is described, experimental data is presented, and data analysis is demonstrated for the stripping, sorption, and biodegradation of napththalene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CA :

liquid phase concentration of naphthalene mg/L

CB A :

concentration of naphthalene on the biomass mg/cell

CG A :

concentration of naphthalene in the gas phase mg/L

CS A :

concentration of naphthalene on the soil mg/L

Cin :

concentration of naphthalene in the feed mg/L

D:

dilution rate, F/A min.−1

F:

feed flow rate 1/min.

fL :

weight fraction of lipids in the biomass dimensionless

fOC :

weight fraction of organic carbon in the soil dimensionless

H:

Henry’s law constant dimensionless

KB :

partition coefficient, biomass to liquid 1/cell

KOW :

octanol-water partition coefficient dimensionless

KP :

partition coefficient, soil to liquid dimensionless

KS :

soil sorption parameter 1/g

Ksta:

stripping constant, QH/F dimensionless

Q:

gas flow rate 1/min

t:

Time min

R:

rate of naphthalene disappearance mg/min

V:

slurry volume in reactor L

V1 :

liquid phase volume in reactor L

W:

soil concentration in reactor g/L

X:

biomass concentration cells/L

ρB :

biomass density g/cell

ρL :

lipid density g/L

ρS :

soil density g/L

References

  1. Blackburn, J. W. (1987),Environmental Science and Technology 21, 884–890.

    Article  CAS  Google Scholar 

  2. Bode, H. W. (1945),Network Analysis and Feedback Amplified Design, D. Van Nostrand, Princeton.

    Google Scholar 

  3. Mendel, J. (1983),Optimal Seismic Deconvolution: An Estimation Based Approach, Academic, New York.

    Google Scholar 

  4. Robinson, E. A. and Trietel, S. (1980),Geophysical Signal Analysis, Prentice Hall, Englewood Cliffs.

    Google Scholar 

  5. Markel, J. D. and Gray, A. H. (1976),Linear Prediction of Speech, Springer-Verlag, New York.

    Google Scholar 

  6. Bender, E. A., Case, T. J., and Gilpin, M. E. (1984),Ecology,65(1), 1–13.

    Article  Google Scholar 

  7. Eisner, E. (1971),Statistical Ecology, Vol. 2, Sampling and Modeling Biological Populations, Pennsylvania State University Press, University Park, PA.

    Google Scholar 

  8. Godfrey, K. R. (1983),Compartmental Models and Their Applications, Academic, New York.

    Google Scholar 

  9. Granger, C. W. J. and Newbold, P. (1977),Forecasting Economic Time Series, Academic, New York.

    Google Scholar 

  10. Malinvaud, E. (1980),Statistical Methods of Econometrics, North-Holland Amsterdam.

    Google Scholar 

  11. Beck, M. B. and Van Straten, G., eds. (1983),Uncertainty and Forecasting of Water Quality, Springer-Verlag, New York.

    Google Scholar 

  12. Ljung, L. (1987),System Identification: Theory for the User, Prentice Hall, Englewood Cliffs.

    Google Scholar 

  13. Blackburn, J. W. (1988), PhD diss., University of Tennessee.

  14. Prokop, A. (1982),Int. J. General Systems 8, 7–31.

    Article  Google Scholar 

  15. Prokop, A. (1983),Foundations of Biochemical Engineering: Kinetics and Thermodynamics in Biological Systems, American Chemical Society, Washington DC, pp. 355–376.

    Google Scholar 

  16. Votruba, J. (1986),Overproduction of Microbial Metabolites: Strain Improvement and Process Control Strategies, Butterworths, Boston, pp. 261–297.

    Google Scholar 

  17. Schugerl, K. (1985),Proc. 1st IFAC Sympos., Noordwijkerhout, Netherlands, December 13–31.

    Google Scholar 

  18. Sayler, G. S. and Sherrill, T. E. (1983),Proc. Intl. Conf. on Environmental Lung Diseases, pp. P184-216.

  19. Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982),Molecular Cloning: A Laboratory Manual, Cold Springs Harbor Laboratory, Cold Springs Harbor, NY.

    Google Scholar 

  20. Sayler, G. S., Shields, M. S., Tedford, E. T., Breen, A., Hooper, S. W., Sirohein, K. M., and Davis, J. W. (1985),Appl. Environ. Microbiol. 49, 1295–1303.

    CAS  Google Scholar 

  21. Sayler, G. S., Harris, C., Pettigrew, C., Pacia, D., Breen, A., and Sirohein, K. M. (1987),Dev. Ind. Microbiol. 27, 135–149.

    CAS  Google Scholar 

  22. Blackburn, J. W., Troxler, W. L., and Sayler, G. S. (1984),Environmental Progress 3(3), 163–176.

    Article  CAS  Google Scholar 

  23. Blackburn, J. W. (1987),Environmental Progress 6(4), 217–223.

    Article  CAS  Google Scholar 

  24. Dunbar, P. (1989), Masters thesis, University of Tennessee.

  25. Sims, R. C. and Overcash, M. R. (1983),Residue Rev. 88, 1–68.

    CAS  Google Scholar 

  26. Karickhoff, S. W. and Morris, K. R. (1985),Environmental Toxicology and Chemistry 4, 469–479.

    Article  CAS  Google Scholar 

  27. Karickhoff, S. W., Brown, D. S., and Scott, T. A. (1979),Water Research 13, 241–248.

    Article  CAS  Google Scholar 

  28. DiGrazia, P. M., King, J. M. H., Hilton, B. L., Applegate, B. M., Blackburn, J. W., Bienkowski, P. R., and Sayler, G. S. Mixed Microbial Degradation of Naphthalene in a Soil Slurry Reactor,Appl. Environ. Microbiol., submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Digrazia, P.M., Blackburn, J.W., Bienkowski, P.R. et al. Development of a systems analysis approach for resolving the structure of biodegrading soil systems. Appl Biochem Biotechnol 24, 237–252 (1990). https://doi.org/10.1007/BF02920249

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02920249

Index Entries

Navigation