Skip to main content
Log in

Production of l-malic acid via biocatalysis employing wild-type and respiratory-deficient yeasts

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The yeastSaccharomyces cerevisiae has been used to efficiently produce L-malic acid from fumaric acid. Fumarase is responsible for the reversible conversion of fumaric and L-malic acids in the TCA cycle. To investigate the function of mitochondrial and cytoplasmic fumarase isoenzymes in L-malic acid bioconversion, a wild-type strain and a cytoplasmic respiratory-deficient mutant devoid of functional mitochondria were employed. The mutant strain, which only contained the cytoplasmic fumarase, was still functional in fumaric acid to L-malic acid bioconversion. However, its specific conversion rate was much lower (0.20 g/g.h) than that of the wild-type strain (0.55 g/g.h).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blair, G. T. and DeFraties, J. J. (1995), inKirk-Othmer Encyclopedia of Chemical Technology, vol. 13, Kroschwitz, J. I. and Howe-Grant, M., eds., John Wiley, New York, pp. 1063–1081.

    Google Scholar 

  2. Peleg, Y., Stieglitz, B., and Goldberg, I. (1988),Appl. Microbiol. Biotechnol. 28, 69–75.

    Article  CAS  Google Scholar 

  3. Battat, E., Peleg, Y., Bercovitz, A., Rokem, J. S., and Goldberg, I. (1991),Biotechnol. Bioeng. 37, 1108–1116.

    Article  CAS  Google Scholar 

  4. Yamamoto, K., Tosa, T., Yamashita, K., and Chibata, I. (1976),Eur. J. Appl. Microbiol. 3, 169–183.

    Article  CAS  Google Scholar 

  5. Takata, I., Yamamoto, K., Tosa, T., and Chibata, I. (1980),Enzyme Microb. Technol. 2, 30–36.

    Article  CAS  Google Scholar 

  6. Wang, X., Gong, C. S., and Tsao, G. T. (1996),Biotechnol. Lett. 18, 1441–1446.

    Article  CAS  Google Scholar 

  7. Boonyarat, D. and Doonan, S. (1988), Int.J. Biochem. 20, 1125–1132.

    CAS  Google Scholar 

  8. Wilkie, D. (1983), inYeast Genetics: Fundamental and Applied Aspects, Spencer, J. F. T., Spencer, D. M., and Smith, A. R. W., eds., Springer-Verlag, New York, pp. 255–267.

    Google Scholar 

  9. Heerde, E. and Radler, F. (1978),Arch. Microbiol. 117, 269–276.

    Article  CAS  Google Scholar 

  10. Ogur, M., St. John, R., and Nagai, S. (1957),Science 125, 928–929.

    Article  CAS  Google Scholar 

  11. Boker-Schmitt, E., Francisci, S., and Schweyen, R. J. (1982),J. Bacteriol. 151, 303–310.

    CAS  Google Scholar 

  12. Sherman, F., Fink, G. R., and Hicks, J. (1986),Methods in Yeast Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  13. Hiraga, K., Inoue, I., Manaka, H., and Tuboi, S. (1984),Biochem. Int. 9, 455–461.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Gong, C.S. & T. Tsao, G. Production of l-malic acid via biocatalysis employing wild-type and respiratory-deficient yeasts. Appl Biochem Biotechnol 70, 845–852 (1998). https://doi.org/10.1007/BF02920194

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02920194

Index Entries

Navigation