Skip to main content
Log in

Molecular and cellular biology of Alzheimer amyloid

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Alzheimer’s Disease (AD), a disorder of unknown etiology, is the most common form of adult-onset dementia and is characterized by severe intellectual deterioration. The definitive diagnosis of AD is made by postmortem examination of the brain, which reveals large quantities of neurofibrillary tangles (NFT) and senile plaques within the parenchyma. The NFT are composed of paired helical filaments associated with several cytoskeletal proteins. The primary protein component of senile plaques is β/A4 amyloid, a 42–43 amino acid peptide derived from a much larger molecule, the amyloid precursor protein (APP). Vascular β/A4 amyloidosis is also prevalent in the disease. The mechanism by which β/A4 amyloid accumulates in the AD brain is unknown. Recent research has demonstrated that the precursor molecule, APP, is a transmembrane protein with a large extracytoplasmic domain, a membrane spanning region that includes the portion that gives rise to β/A4 amyloid, and a short intracytoplasmic domain. The precursor has multiple forms among which are those that differ by a variable length insert within the extracytoplasmic domain. The insert has sequence homology to the family of Kunitz protease inhibitor proteins. Cellular and animal models have been developed to study the nature of APP processing and the biological and behavioral consequences of β/A4 amyloidosis. The results of such studies indicate that the normal processing of APP involves enzymatic cleavage of the molecule within the β/A4 amyloid region, thus preventing the accumulation of β/A4 in the normal brain. The factors leading to abnormal processing of APP, and consequent β/A4 amyloid accumulation within the AD brain, have yet to be identified. In cell culture, the biological effects associated with β/A4 amyloid include neurotrophic and neurotoxic activities, while the peptide has also been shown to have dramatic behavioral effects in animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allsop, D., Landon, M., Kidd, M., Lowe, J.S., Reynolds, G.P., Gardner, A. (1986). Monoclonal antibodies raised against a subsequence of senile plaque core protein react with plaque cores, plaque periphery, and cerebrovascular amyloid in Alzheimer’s disease. Neurosci. Lett. 68:252–256

    PubMed  CAS  Google Scholar 

  • Allsop, D., Wong, C.W., Ikeda, S.I, Landon, M., Kidd, M., Glenner, G.G. (1988). Immunohistochemical evidence for the derivation of a peptide ligand from the amyloid β-protein precursor of Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 85:2790–2794

    PubMed  CAS  Google Scholar 

  • Anderton, B.H., Brion, J.P., Flament-Durand, J., Haugh, M.C., Kahn, J., Miller, C.L., Probst, A., Ulrich, J. (1987). Neurofibrillary tangles and the neuronal cytoskeleton. J. Neural Transm Suppl. 24:191–196

    PubMed  CAS  Google Scholar 

  • Autillio-Gambetti, L., Morandi, A., Tabaton, M., Schaetzle, B., Kovaks, D., Perry, G., Greenberg, B., Gambetti, P. (1988). The amyloid precursor protein of Alzheimer disease is expressed as a 130 kDa polypeptide in various cultured cell types. FEBS Lett. 241:94–98

    Google Scholar 

  • Bahmanyar S., Higgins, G., Goldgaber, D., Lewis, D.A., Morrison, J.H., Wilson, M.C., Shankar, S.K., Gajdusek, D.C. (1987). Localization of amyloid β protein messenger RNA in brains from patients with Alzheimer’s disease. Science 237:77–80

    PubMed  CAS  Google Scholar 

  • Barrow, C.J., Zagorski, M.G. (1991). Solution structures of β peptide and its constituent fragments: Relation to amyloid deposition. Science 253:179–182

    PubMed  CAS  Google Scholar 

  • Benes, F.M., Reifel, J.L., Majocha, R.E., Marotta, C.A. (1989). Evidence for diffusion of Alzheimer amyloid A4 (β-amyloid) epitope during neuritic plaque formation. Neuroscience 33:483–488

    PubMed  CAS  Google Scholar 

  • Benes, F.M., Farol, P.A., Majocha, R.E., Marotta, C.A. (1991). Evidence for destruction of axons within regions occupied by senile plaques in Alzheimer cortex. Neuroscience 42:651–660

    PubMed  CAS  Google Scholar 

  • Bothwell, M.L., Shooter, E.M. (1978). Thermodynamics of interaction of the subunits of 7 S nerve growth factor. The mechanism of activation of the esteropeptidase activity by chelators. J. Biol. Chem. 253:8458–8464

    PubMed  CAS  Google Scholar 

  • Buxbaum, J.D., Gandy, S.E., Cicchetti, P., Ehrlich, M.E., Czernik, A.J., Fracasso, R.P., Ramabhadran, T.V., Unterbeck, A.J., Greengard, P. (1990). Processing of Alzheimer beta/A4 amyloid precursor protein: Modulation by agents that regulate protein phosphorylation. Proc. Natl. Acad. Sci. USA 87:6003–6006

    PubMed  CAS  Google Scholar 

  • Card, J.P., Meade, R.P., Davis, L.G. (1988). Immunocytochemical localization of the precursor protein for β-amyloid in the rat central nervous system. Neuron 9:835–846

    Google Scholar 

  • Castano, E.M., Ghiso, J., Prelli, F., Gorevic, P.D., Migheli, A., Frangione, B. (1986). In vitro formation of amyloid fibrils from two synthetic peptides of different lengths homologous to Alzheimer’s disease β-protein. Biochem. Biophys. Res. Commun. 141: 782–789

    PubMed  CAS  Google Scholar 

  • Chou, W.G., Majocha, R.E., Sajdel-Sulkowska, E.M., Benes, F.M., Salim, M., Stoler, M., Fulwiler, C.E., Ventosa-Michelman, M., Rodenrys, A.M., Moore, K.E., Webb, T., Zain, S.B., Marotta, C.A. (1988). Immunologic and molecular genetic studies on amyloid deposition in the Alzheimer’s disease brain. Brain Dysfunct. 1:133–145

    Google Scholar 

  • Chou, W.-G., Zhu, W., Salim, M., Rehman, S., Tate-Ostroff, B., Majocha, R.E., Sajdel-Sulkowska, E.M., Marotta, C.A., Zain, S.B. (1989). Extracytoplasmic and A4 domains of the amyloid precursor protein: Molecular cloning, genetically engineered cell lines and immunocytochemical investigations. Alzheimer’s Disease and Related Disorders. K. Iqbal, H.M. Wisniewski, B. Winblad (eds). Alan R. Liss, New York, pp 991–999

    Google Scholar 

  • Chou, W.G., Zain, S.B., Rehman, S., Tate-Ostroff, B., Majocha, R.E., Benes, F.M., Marotta, C.A. (1990). Alzheimer cortical neurons containing abundant amyloid mRNA. Relationship to amyloid deposition and senile plaques. J. Psychiatr. Res. 24:37–50

    PubMed  CAS  Google Scholar 

  • Cohen, M.L., Golde, T.E., Usiak, M.F., Younkin, L.H., Younkin, S.G. (1988). In situ hybridization of nucleus basalis neurons shows increased β-amyloid mRNA in Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 85:1227–1231

    PubMed  CAS  Google Scholar 

  • Coyle, J.T., Price, D.L., DeLong, M.R. (1983). Alzheimer’s Disease: A disorder of cortical cholinergic innervation. Science 219:1184–1190

    PubMed  CAS  Google Scholar 

  • Crowther, R.A., Wischik, C.M. (1985). Image reconstruction of the Alzheimer paired helical filament. EMBO J 4:3661–3665

    PubMed  CAS  Google Scholar 

  • Davies, P., Maloney, A.J.F. (1980). Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2:1403

    Google Scholar 

  • Davies, P., Katzman, R., Terry, R.D. (1980). Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer’s disease. Nature 288:279–280

    PubMed  CAS  Google Scholar 

  • de Sauvage, F., Octave, J.N. (1989). A novel mRNA of the A4 amyloid precursor gene coding for a possibly secreted protein. Science 245:651–653

    PubMed  Google Scholar 

  • Divry, P. (1927). Etude histo-chimique des plaques senile. J. Neurol. Psych. 27:643–657

    Google Scholar 

  • Doyle, E., Bruce, M.T., Breen, K.C., Smith, D.C., Anderton, B., Regan, C.M. (1990). Intraventricular infusions of antibodies to amyloid-β-protein precursor impair the acquisition of a passive avoidance response in the rat. Neurosci. Lett. 115:97–102

    PubMed  CAS  Google Scholar 

  • Dyrks, J.D., Weidemann, A., Multhaup, G., Salbaum, J.M., Lamaire, H.G., Kang, J., Muller-Hill, B., Masters, C.L., Beyreuther, K. (1988). Identification transmembrane orientation and biogenesis of the amyloid A4 precursor of Alzheimer’s Disease. EMBO J. 7:949–957

    PubMed  CAS  Google Scholar 

  • Esch, F.S., Keim, P.S., Beattie, E.C., Blacher, R.W., Culwell, A.R., Oltersdorf, T., McClure, D., Ward, P.J. (1990). Cleavage of amyloid β peptide during constitutive processing of its precursor. Science 248:1122–1124

    PubMed  CAS  Google Scholar 

  • Flood, J.F., Morley, J.E., Roberts, E. (1991). Amnestic effects in mice of four synthetic peptides homologous to amyloid β protein from patients with Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 88:3363–3366

    PubMed  CAS  Google Scholar 

  • Friedland, R.P., Budinger, T.F., Ganz, E., Yano, Y., Mathis, C.A., Koss, B., Ober, B.A., Huesman, R., Derenzo, S. (1983). Regional cerebral metabolic alterations in dementia of the Alzheimer-type: Positron emission tomography with 18-fluorodeoxyglucose. J. Comput. Assist. Tomogr. 7:590–589

    PubMed  CAS  Google Scholar 

  • Glenner, G.G. (1980). Amyloid deposits and amyloidosis. The β-fibrilloses. N. Engl. J. Med. 302:1333–1343

    PubMed  CAS  Google Scholar 

  • Glenner, G.G., Wong, C.W. (1984a). Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120:885–890

    PubMed  CAS  Google Scholar 

  • Glenner, G.G., Wong, C.W. (1984b). Alzheimer’s disease and Down’s syndrome: Sharing of a unique cerebrovascular amyloid fibril protein. Biochem. Biophys. Res. Commun. 122:1131–1135

    PubMed  CAS  Google Scholar 

  • Glenner, G.G., Henry, J.H., Fujihara, S. (1981). Congophilic angiopathy in the pathogenesis of Alzheimer’s degeneration. Ann. Pathol. 1:120–129

    PubMed  CAS  Google Scholar 

  • Goate, A., Chartier-Harlin, M.-C., Mullan, M.L., Brown, J., Crawford, F., Fidani, L., Giuffra, L., Haynes, A., Irving, N., James, L., Mant R., Newton, P., Rooke, K., Roques, P., Talbot, C., Pericak-Vance, M., Roses, A., Williamson, R., Rossor, M., Owen, M., Hardy, J. (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349:704–706

    PubMed  CAS  Google Scholar 

  • Gode, T.E., Estus, S., Usiak, M., Younkin, L.H., Younkin, S.G. (1990). Expression of β amyloid protein precursor mRNA: Recongnition of a novel alternatively spliced form and quantitation in Alzheimer’s disease using PCR. Neuron 4:253–267

    Google Scholar 

  • Goedert, M. (1987). Neuronal localization of amyloid beta protein precursor mRNA in normal human brain and in Alzheimer’s disease. EMBO J. 6:3627–3632

    PubMed  CAS  Google Scholar 

  • Goldgaber, D., Lerman, M.I., McBride, O.W., Saffiotti, U., Gajdusek, D.C. (1987). Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer’s disease. Science 235:877–880

    PubMed  CAS  Google Scholar 

  • Gorevic, P.D., Castano, E.M., Sarma, S., Frangione, B. (1987). Ten to fourteen residue peptides of Alzheimer’s disease protein are sufficient for amyloid fibril formation and its characteristic x-ray diffraction pattern. Biochem. Biophys. Res. Commun. 147:854–862

    PubMed  CAS  Google Scholar 

  • Greene, L.A., Tischler, A.S. (1976). Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. U.S.A. 73:2424–2428

    PubMed  CAS  Google Scholar 

  • Greenwald, B.S., Mohs, R.C., Davis, K.L. (1983). Neurotransmitter deficits in Alzheimer’s Disease: Criteria for significance. J. Am. Geriatr. Soc. 31:310–316

    PubMed  CAS  Google Scholar 

  • Guiroy, D.C., Miyazaki, M., Multhaup, G., Fischer, P., Garruto, R.M. Beyreuther, K., Masters, C.L., Simms, G., Gibbs, C.J., Gajdusek, D.C. (1987). Amyloid of neurofibrillary tangles of Guamanian parkinsonism-dementia and Alzheimer disease share identical amino acid sequence. Proc. Natl. Acad. Sci. U.S.A. 84:2073–2977

    PubMed  CAS  Google Scholar 

  • Hart, R.P., Kwentus, J.A., Harkins, S.W., Taylor, J.R. (1988). Rate of forgetting in mild Alzheimer’s type dementia. Brain Cogn. 7:31–38

    PubMed  CAS  Google Scholar 

  • Hay, J.W., Ernst, R.L. (1987). The economic costs of Alzheimer’s disease. Am. J. Pub. Health 77:1169–1175

    PubMed  CAS  Google Scholar 

  • Higgins, G.A., Lewis, D.A., Bahmanyar, S., Goldgaber, D., Gajdusek, D.C., Young, W.G., Morrison, J.H., Wilson, M.C. (1988). Differential regulation of amyloid-β-protein mRNA expression within hippocampal neuronal subpopulations in Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 85:1297–1301

    PubMed  CAS  Google Scholar 

  • Higgins, G.A., Oyler, G.A., Neve, R.L., Chen, K.S., Gage, F.H. (1990). Altered levels of amyloid protein precursor transcripts in the basal forebrain of behaviorally impaired aged rats. Proc. Natl. Acad. Sci. U.S.A. 87:3032–3036

    PubMed  CAS  Google Scholar 

  • Hyman, B.T., VanHoesen, G.W., Damasio, A.R., Barnes, C.L. (1984). Alzheimer’s disease: Cell specificity pathology isolates the hippocampal formation. Science 225:1168–1170

    PubMed  CAS  Google Scholar 

  • Ishii, N., Nishihara, Y., Horie, A. (1983). Lobar cerebral hemorrhage and amyloid angiopathy: A report of 4 autopsy cases. No To Shinkei Brain and Nerve 35:167–174

    PubMed  CAS  Google Scholar 

  • Ishiura, S. (1991). Proteolytic cleavage of the Alzheimer’s disease amyloid A4 precursor protein. J. Neurochem. 56:363–369

    PubMed  CAS  Google Scholar 

  • Kang, J., Muller-Hill, B. (1990). Differential splicing of Alzheimer’s disease amyloid A4 precursor RNA in rat tissues: preA4 695 mRNA is predominantly produced in rat and human brain. Biochem. Biophys. Res. Commun. 166:1192–1200

    PubMed  CAS  Google Scholar 

  • Kang, J., Lemaire, J.G., Unterbeck, A., Salbaum, J.M., Masters, C.L., Grzeschik, K.H., Multhaup, G., Beyreuther, K., Muller-Hill, B. (1987). The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736

    PubMed  CAS  Google Scholar 

  • Katzman, R. (1986). Alzheimer’s Disease. N. Engl. J. Med. 314:964–973

    PubMed  CAS  Google Scholar 

  • Katzman, R., Saitoh, R. (1991). Advances in Alzheimer’s disease. FASEB J. 5:278–286

    PubMed  CAS  Google Scholar 

  • Kidd, M. (1963). Paired belical filaments in electron microscopy in Alzheimer disease. Nature 197:192–193

    PubMed  CAS  Google Scholar 

  • Kirschner, D.A., Abraham, C., Selkoe, D.J. (1986). X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-beta conformation. Proc. Natl. Acad. Sci. U.S.A. 83:503–507

    PubMed  CAS  Google Scholar 

  • Kitaguchi, N., Takahashi, Y., Tokushima, Y., Shiojiri, S., Ito, H. (1988). Novel precursor of Alzheimer’s disease amyloid protein shows protease inhibitory activity. Nature 331:531–534

    Google Scholar 

  • Knauer, D.J., Scaparro, K.M., Cunningham, D.D. (1982). The gamma subunit of 7S nerve growth factor binds to cells via complexes formed with two-cell-secreted nexins. J. Biol. Chem. 257:15098–15104

    PubMed  CAS  Google Scholar 

  • Knauer, D.J., Thompson, J.A., Cunningham, D.D. (1983). Protease nexins: Cell-secreted proteins that mediate the binding, internalization, and degradation of regulatory serine proteases. J. Cell Physiol. 117:385–396

    PubMed  CAS  Google Scholar 

  • Kosik, K.S. (1991). Alzheimer plaques and tangles: advances on both fronts. Trends Neurosci. 14:218–219

    PubMed  CAS  Google Scholar 

  • Koss, E., Friedland, R.P., Ober, B.A., Jagust, W.J. (1985). Differences in lateral hemispheric asymmetries of glucose utilization between early and late-onset Alzheimer-type dementia. Am. J. Psychiatry 142:638–640

    PubMed  CAS  Google Scholar 

  • Landon, M., Kidd, M. (1989). Amyloid in Alzheimer’s disease. Biochem. Soc. Trans. 17:69–72

    PubMed  CAS  Google Scholar 

  • Lee, S., Stemmerman, G.N. (1978). Congophilic angiopathy and cerebral hemorrhage. Arch. Pathol. Lab Med. 102:317–328

    PubMed  CAS  Google Scholar 

  • Lee, V., Balin, B.J., Otvos, L., Jr., Trojanowski, J.Q. (1990). A68: A major subunit of paired helical filaments and derivatized forms of normal tau. Science 251:675–678

    Google Scholar 

  • Lemaire, H.G., Salbaum, J.M., Multhaup, G., Kang, J., Bayney, R.M., Unterbeck, A., Beyreuther, K., Muller-Hill, B. (1989). The preA4 (695) precursor protein of Alzheimer’s disease A4 amyloid is encoded by 16 exons. Nucleic Acids Res. 17:517–522

    PubMed  CAS  Google Scholar 

  • Levy, E., Carman, M.D., Fernandez-Madrid, I.J., Power, M.D., Lieberburg, I., van Duinen, S.G., Gerard, T., Bots, A.M., Luyendijk, W., Frangione, B. (1990). Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248:1124–1128

    PubMed  CAS  Google Scholar 

  • Lewis, D.A., Higgins, G.A., Young, W.G., Goldgaber, D., Gajdusek, D.C., Wilson, M.C., Morrison, J.H. (1988). Distribution of precursor amyloid-beta-protein messenger RNA in human cerebral cortex: Relationship to neurofibriliary tangles and neuritic plaques. Proc. Natl. Acad. Sci. U.S.A. 85:1691–1695

    PubMed  CAS  Google Scholar 

  • Lishman, A. (1978). Organic Psychiatry. Blackwell, London

    Google Scholar 

  • Love, S., Saitoh, T., Quijada, S., Cole, G.M., Terry, R.D. (1988). Alz 50, ubiquitin and tau immunoreactivity of neurofibrillary tangles, Pick bodies and Lewy bodies. J. Neuropathol. Exp. Neurol. 47:393–405

    PubMed  CAS  Google Scholar 

  • Luo, L., Martin-Morris, L.E., White, K. (1990). Identification, secretion, and neural expression of APPL, aDrosophila protein similar to human amyloid protein precursor. J. Neurosci. 10:3849–3861

    PubMed  CAS  Google Scholar 

  • Majocha, R.E., Benes, F.M., Reifel, J.L., Rodenrys, A.M., Marotta, C.A. (1988). Laminar-specific distribution and infrastructural detail of amyloid in the Alzheimer cortex visualized by computer-enhanced imaging of unique epitopes. Proc. Natl. Acad. Sci. U.S.A. 85:6182–6186

    PubMed  CAS  Google Scholar 

  • Majocha, R.E., Tate, B., Ventosa-Michelman, M., Marotta, C.A. (1991). Characterization of neurite-stimulating activity from conditioned media of transfected PC12 cells that overexpress β/A4-amyloid. Soc. Neurosci. 17:1105

    Google Scholar 

  • Mandybur, T.I. (1975). The incidence of cerebral amyloid angiopathy in Alzheimer’s disease. Neurology 25:20–126

    Google Scholar 

  • Marotta, C.A. (1984). Neuronal intermediate filaments. Handbook of Neurochemistry, Vol 7, A. Lajtha (ed). Plenum Press, New York, pp 305–309

    Google Scholar 

  • Marotta, C.A., Majocha, R.E., Coughlin, J.E., Manz, H.J., Davies, P., Ventosa-Michelman, M., Chou, W.G., Zain, S.B., Sajdel-Sulkowska, E.M. (1986). Transcriptional and translational regulatory mechanisms during normal aging of the mammalian brain and in Alzheimer’s disease. Proc. Brain Res. 70:303–320

    Article  CAS  Google Scholar 

  • Marotta, C.A., Chou, W.-G., Majocha, R.E., Watkins, R., Zain, S.B. (1989a). Overexpression of amyloid precursor protein A4 (β-amyloid) immunoreactivity in genetically transformed cells. Implications for a cellular model of Alzheimer amyloidosis. Proc. Natl. Acad. Sci. U.S.A. 86:337–341

    PubMed  CAS  Google Scholar 

  • Marotta, C.A., Walcott, E>C., Tate-Ostroff, B., Majocha, R.E. (1989b). Immunocytochemical studies of brain and PC12 cells using antibodies to the amyloid precursor protein. Soc. Neurosci. 15:1375

    Google Scholar 

  • Masters, C.L., Multhaup, G., Simms, G., Pottgiesser, J., Martins, R.M., Beyreuther, K. (1985a). Neuronal origin of a cerebral amyloid: Neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J. 4:2757–2763

    PubMed  CAS  Google Scholar 

  • Masters, C.L., Simms, G., Weinman, N.A., Multhaup, G., McDonald, B.L., Beyreuther, I. (1985b). Amyloid plaque core protein in Alzheimer’s disease and Down syndrome. Proc. Natl. Acad. Sci. U.S.A. 82:4245–4249

    PubMed  CAS  Google Scholar 

  • McGeer, E.G., Singh, E.A., McGeer, P.L. (1987). Gamma-glutamyltransferase: Normal cortical levels in Alzheimer disease. Alzheimer Dis. Assoc. Disorders 1:38–42

    Article  CAS  Google Scholar 

  • McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan, E.M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of the DHHS Task Force on Alzheimer’s disease. Neurology 34:939–944

    PubMed  CAS  Google Scholar 

  • Merz, P.A., Wisniewski, H.M., Somerville, R.A., Bobin, S.A., Masters, C.L., Iqbal, K. (1983). Ultrastructural morphology of amyloid fibrils from neuritic and amyloid plaques. Acta Neuropathol. 60:113–124

    PubMed  CAS  Google Scholar 

  • Mobley, W.C., Neve, R.L., Prusiner, S.B., McKinley, M.P. (1988). Nerve growth factor increases mRNA levels for the prion protein and the β-amyloid protein precursor in developing hamster brain. Proc. Natl. Acad. Sci. U.S.A. 85:9811–9815

    PubMed  CAS  Google Scholar 

  • Mortimer, J.A., French, L.R., Hutton, J.T., Schuman, L.M. (1985). Head injury as a risk factor for Alzheimer’s disease. Neurology 35:264–267

    PubMed  CAS  Google Scholar 

  • Mountjoy, C.Q., Tomlinson, B.E., Gibson, P.H. (1982). Amyloid and senile plaques and cerebral blood vessels. A semi-quantitative investigation of a possible relationship. J. Neurol. Sci. 57:89–102

    PubMed  CAS  Google Scholar 

  • Mountjoy, C.Q., Roth, M., Evans, N.J.R., Evans, H.M. (1983). Cortical neuronal counts in normal elderly controls and demented patients. Neurobiol. Aging 4:1–11

    PubMed  CAS  Google Scholar 

  • Moss, A., Albert, M., Butters, N., Payne, M. (1986). Differential patterns of memory loss among patients with Alzheimer’s disease, Huntington’s disease and alcoholic Korsakoff’s syndrome. Arch. Neurol. 43:239–246

    PubMed  CAS  Google Scholar 

  • Nikina, N. (1989). The reinterpretation of the immunochemical study of Alzheimer neurofibrillary tangles. Ann. Med. 21:117–119

    Google Scholar 

  • Oltersdorf, T., Fritz, L.C., Schenk, D.B., Lieberburg, I., Johnson-Wood, K.L., Beattie, E.C., Ward, P.J., Blacher, R.W., Dovey, H.F., Sinha, S. (1989). The secreted form of Alzheimer’s amyloid precursor protein with the Kunidz domain is protease nexin-II. Nature 341:144–147

    PubMed  CAS  Google Scholar 

  • Palmert, M.R., Golde, T.E., Cohen, M.L., Kovacs, D.M., Tanzi, R.E., Gusella, J.G., Usiak, M.F., Younkin, L.H., Younkin, S.G. (1988). Amyloid protein precursor messenger RNAs: Differential expression in Alzheimer’s disease. Science 241:1080–1084

    PubMed  CAS  Google Scholar 

  • Palmert, M.R., Podlisny, M.B., Witker, D.S., Oltersdorf, T., Younkin, L.H., Selkoe, D.J., Younkin, S.G. (1989a). The β-amyloid protein precursor of Alzheimer disease has soluble derivatives found in human brain and cerebrospinal fluid. Proc. Natl. Acad. Sci. U.S.A. 86:6338–6342

    PubMed  CAS  Google Scholar 

  • Palmert, M.R., Siedlak, S.L., Berman-Podisny, M., Greenbert, B., Shelton, E.R., Chan, H.W., Usiak, M., Selkoe, D.J., Perry, G., Younkin, S.G. (1989b). Soluble derivatives of the β amyloid protein precursor of Alzheimer’s disease are labeled by antisera to the amyloid protein. Biochem. Biophys. Res. Commun. 165:182–188

    PubMed  CAS  Google Scholar 

  • Perl, D.P., Brody, A.R. (1980). Alzheimer’s disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons. Science 208:297–299

    PubMed  CAS  Google Scholar 

  • Perry, E.K. (1980). The cholinergic system in old age and Alzheimer’s disease. Age Ageing 9:1–8

    PubMed  CAS  Google Scholar 

  • Perry, E.K. (1990). Nerve growth factor and the basal forebrain cholinergic system: A link in the etiopathology of neurodegenerative dementias? Alzheimer Dis. Assoc. Disorders 4:1–13

    CAS  Google Scholar 

  • Ponte, P., Gonzalez-DeWhitt, P., Schilling, J., Miller, J., Hsu, D., Greenberg, B., Davis, K., Wallace, W., Lieberburg, I., Fuller, F., Cordell, B. (1988). A new A4 amyloid mRNA contains a domain homologous to serine protease inhibitors. Nature 331:525–527

    PubMed  CAS  Google Scholar 

  • Price, D.L. (1986). New perspectives on Alzheimer’s disease. Annu. Rev. Neurosci. 9:489–512

    PubMed  CAS  Google Scholar 

  • Pro, J.D., Smith, C.H., Sumi, S.M. (1980). Presenile Alzheimer disease: Amyloid plaques in the cerebellum. Neurology 30:820–825

    PubMed  CAS  Google Scholar 

  • Ranalli, P., Bergeron, C. (1984). Amyloid angiopathy in Alzheimer’s disease. Ann. Neurol. 16:119–127

    Google Scholar 

  • Quom, D., Wang, Y., Catalano, R., Scardina, J.M., Murakami, K., Cordell, B. (1991). Formation of β-amyloid protein deposits in brains of transgenic mice. Nature 352:239–241

    Google Scholar 

  • Refolo, L.M., Salton, S.R., Anderson, J.P., Mehta, P., Robakis, N.K. (1989). Nerve and epidermal growth factors induce the release of the Alzheimer amyloid precursor from PC 12 cell cultures. Biochem. Biophys. Res. Commun. 164:664–670

    PubMed  CAS  Google Scholar 

  • Robakis, N.K., Ramakrishna, N., Wolfe, G., Wisniewski, H.M. (1987). Molecular cloning and characterization of a cDNA encoding the cerebrovascular and neuritic plaque amyloid peptides. Proc. Natl. Acad. Sci. U.S.A. 84:4190–4194

    PubMed  CAS  Google Scholar 

  • Roher, A.E., Ball, M.J., Bhave, S.V., Wakade, A.R. (1991). β-Amyloid from Alzheimer disease brains inhibits sprouting and survival of sympathetic neurons. Biochem. Biophys. Res. Commun. 174:572–579

    PubMed  CAS  Google Scholar 

  • Rozenmuller, J.M., Eikelenboom, P., Kamphorst, W., Stam, F.C. (1988). Lack of evidence for dysfunction of the blood-brain barrier in Alzheimer’s disease: An immunohistochemical study. Neurobiol. Aging 9:383–391

    Google Scholar 

  • Rumble, B., Retallack, R., Hilbich, C., Simms, G., Multhaup, G., Martins, R., Hockey, A., Montgomery, P., Beyreuther, K., Masters, C.L. (1989). Amyloid A4 protein and its precursor in Down’s syndrome and Alzheimer’s disease. N. Engl. J. Med. 320:1446–1452

    PubMed  CAS  Google Scholar 

  • Rudelli, R.D., Wisniewski, H.M. (1985). Cerebellar amyloid plaques in Alzheimer’s dementia and senile dementia of the Alzheimer type: Morphology and distribution. J. Neuropathol. Exp. Neurol. 44:364

    Google Scholar 

  • Saitoh, T., Sundsmo, M., Roch, J.-M., Kimura, N., Cole, G., Schubert, D., Oltersdorf, T., Schenk, D.B. (1989). Secreted form of amyloid β protein precursor is involved in growth regulation of fibroblasts. Cell 58:615–622

    PubMed  CAS  Google Scholar 

  • Salim, M., Zain, S.B., Chou, W.G., Saidel-Sulkowska, E.M., Majocha, R.E., Rehman, S., Benes, F.M., Marotta, C.A. (1988). Molecular cloning of amyloid cDNA from Alzheimer brain messenger RNA. Correlative neuroimmunologic and in situ hybridization studies. Familial Alzheimer’s Disease Molecular Genetics, Clinical Prospects and Societal Issues. J.P. Blass, G.D. Miner, L.A. Miner, R.W. Richter and J.L. Valentine (eds), Marcel Dekker, New York, pp 153–165

    Google Scholar 

  • Sasaki, H., Muramoto, O., Kanazawa, I., Arai, H., Kosaka, K., Iizuka, R. (1986). Regional distribution of amino acid transmitters in postmortem brains and presenile and senile dementia of Alzheimer type. Ann. Neurol. 19:263–269

    PubMed  CAS  Google Scholar 

  • Schellenberg, G.D., Bird, T.D., Wiseman, E.M., Moore, D.K., Boehnke, M., Bryant, E.M. Lampe, T.H., Nochlin, D., Sumi, S.M., Deeb, S.S., Beyreuther, K., Martin, G.M. (1988). Absence of linkage of chromosome 21q21 markers to familial Alzheimer’s disease. Science 241:1507–1510

    PubMed  CAS  Google Scholar 

  • Schubert, D., Cole, G., Saitoh, T., Oltersdorf, T. (1989). Amyloid beta protein precursor is a mitogen. Biochem. Biophys. Res. Commun. 162:83–88

    PubMed  CAS  Google Scholar 

  • Shivers, B., Hilbich, C., Multhaup, G., Salbaum, J.M., Beyreuther, K., Seeburg, P.H. (1988). Alzheimer’s disease amyloidogenic glycoprotein: Expression pattern in rat brain suggests a role in cell contact. EMBO J. 7:1365–1370

    PubMed  CAS  Google Scholar 

  • Sisodia, S.S., Koo, E.H., Beyreuther, K., Unterbeck, A., Price, D.L. (1990). Evidence that β-amyloid protein in Alzheimer’s disease is not derived by normal processing. Science 248:492–495

    PubMed  CAS  Google Scholar 

  • St. George-Hyslop, P.H., Tanzi, R.E., Pollinsky, R.J., Haines, J.L., Nee, L., Watkins, P.C. (1990a). The genetic defect causing familial Alzheimer’s disease maps on chromosome 21. Science 235:885–890

    Google Scholar 

  • St. George-Hyslop, P.H., Haines, J.L., Farrer, L.A., Polinsky, R., Van Broeckhoven, C., Goate, A., McLachlan, D.R., Orr, H., Bruni, A.C., Sorbi, S., Rainero, I., Foncin, J.-F., Pollen, D., Cantu, J.-M., Tupler, R., Voskresenskaya, N., Mayeux, R., Growdon, J., Fried, V.A., Myers, R.H., Nee, L., Backhovens, H., Martin, J.-J., Rossor, J., Owen, M.J., Mullan, M., Percy, M.E., Karlnsky, J., Rich, S., Heston, L., Montesi, M., Mortilla, M., Nacmeas, M., Gusella, J.F., Hardy, J.A., members of the FAD Collaborative Study Group (1990b). Genetic linkage studies suggest that Alzheimer’s disease is not a single homogeneous disorder. Nature 347:194–197

    PubMed  CAS  Google Scholar 

  • Tagawa, K., Kunishita, K., Maruyama, K., Kazuaki, Y., Kominami, E., Tsuchiya, T., Suzuki, K., Tabira, T., Sugita, H., Ishiura, S. (1991). Alzheimer’s disease amyloid β-clipping enzyme (APP secretase): Identification, purification and characterization of the enzyme. Biochem. Biophys. Res. Commun. 177:377–387

    PubMed  CAS  Google Scholar 

  • Tanzi, R.E., Gusella, J.F., Watkins, P.C., Gruns, G.A.P., St. George-Hyslop, P., VanKeuren, M.L., Patterson, D., Pagan, S., Kurnit, D.M., Neve, R.L. (1987a). Amyloid β protein gene: cDNA, mRNA cistribution and genetic linkage near the Alzheimer locus. Science 235:880–884

    PubMed  CAS  Google Scholar 

  • Tanzi, R.E., St. George-Hyslop, P.H., Haines, J.L., Polinsky, R.J., Nee, L., Foncin, J.-F., Neve, R.L., McClatchey, A.I., Conneally, P.M., Gusella, J.F. (1987b). The genetic defect in familial Alzheimer’s disease is not tightly linked to the amyloid β-protein gene. Nature 329:156–157

    PubMed  CAS  Google Scholar 

  • Tanzi, R.E., McClatchey, A.I., Lamperti, E.D., Villa-Komaroff, L., Gusella, J.F., Neve, R.L. (1988). Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s disease. Nature 331:528–530

    PubMed  CAS  Google Scholar 

  • Tate, B., Aboody, K.S., Morris, A.M., Majocha, R.E., Marotta, C.A. (1991). Alterations in the circadian rhythms of rats receiving SCN implants of PC12 cells overexpressing Alzheimer’s disease β-amyloid. Soc. Neurosci. 17:1066

    Google Scholar 

  • Tate-Ostroff, B., Majocha, R.E., Marotta, C.A. (1989a). Identification of cellular and extracellular sites of amyloid precursor protein extracytoplasmic domain in normal and Alzheimer brains. Proc. Natl. Acad. Sci. U.S.A. 86:745–749

    PubMed  CAS  Google Scholar 

  • Tate-Ostroff, B., Walcott, E.C., Paskevich, P., Zain, S.B., Chou, W.G., Majocha, R.E., Marotta, C.A. (1989b). Morphological and immunological studies of PC12 cells transfected with the β-amyloid region of the amyloid precursor protein. Soc. Neurosci. 15:654

    Google Scholar 

  • Tate-Ostroff, B., Majocha, R.E., Walcott, E.C., Ventosa-Michelman, M., Marotta, C.A. (1990). Colocalization of amino terminal and A4 (β-amyloid) antigens in Alzheimer plaques: Evidence for coordinated processing of the amyloid precursor protein. J. Geriatr. Psychiatry Neurol. 3:139–145

    PubMed  CAS  Google Scholar 

  • Tomlinson, B.E., Corsellis, J.A.N. (1984). Ageing and the dementias. Greenfield’s Neuropathology, ed 4. J.H. Adams, H.A.N. Corsellis, L.W. Duchen (eds). John Wiley & Sons, New York, pp 951–1006

    Google Scholar 

  • Van Broeckhoven, C., Haan, J., Bakker, E., Hardy, J.A., Van Hul, W., Wehnert, A., Vegter-Van der Vlis, M., Roos, R.A.C. (1990). Amyloid β protein precursor gene and hereditary cerebral hemorrhage with amyloidosis (Dutch). Science 248:1120–1122

    PubMed  Google Scholar 

  • Van Nostrand, W.E., Wagner, S.L., Suzuki, M., Choi, B.H., Farrow, J.S., Geddes, J.W., Cotman, C.W., Cunmingham, D.D. (1989). Protease nexin-II, a potent anti-chymotrypsin, shows identity to amyloid β-protein precursor. Nature 341:546–549

    PubMed  Google Scholar 

  • Vinters, H.V. (1987). Cerebral amyloid angiopathy: A critical review. Stroke 18:311–324

    PubMed  CAS  Google Scholar 

  • Vitek, M.P., Rasool, C.G., de Sauvage, F., Vitek, S.M., Bartus, R.T., Beer, B., Ashton, R.A., Macq, A.-F., Maloteaux, J.M., Blume, A.J., and Octave, J.-N., (1988). Absence of mutation in the beta-amyloid cDNAs cloned from the brains of three patients with sporadic Alzheimer’s disease. Brain Res. 464:121–131

    PubMed  CAS  Google Scholar 

  • Weidemann, A., Köning, G., Bunke, D., Fischer, P., Salbaum, M.J., Masters, C.L., Beyreuther, K. (1989). Identification, biogenesis and localization of precursors of Alzheimer’s disease A4 amyloid protein. Cell 57:115–126

    PubMed  CAS  Google Scholar 

  • Wells, C.E. (1977) Diagnostic evaluation and treatment in dementia. Dementia, 2nd ed. C.M. Wells (ed). F.A. Davis, Philadelphia, pp 247–276

    Google Scholar 

  • Whitson, J.S., Selkoe, D.J., Cotman, C.W. (1989). Amyloid β protein enhances the survival of hippocampal neurons in vitro. Science 243:1488–1490

    PubMed  CAS  Google Scholar 

  • Whitson, J.S., Glabe, C.G., Shintani, E., Abcar, A., Cotman, C.W. (1990). β-Amyloid protein promotes neuritic branching in hippocampal cultures. Neurosci. Lett. 110:319–324

    PubMed  CAS  Google Scholar 

  • Wion, D., Le Bert, M., Brachet, P. (1988). Messenger RNAs of β-amyloid precursor protein and prion protein are regulated by nerve growth factor in PC12 cells. Int. J. Dev. Neurosci. 6:387–393

    PubMed  CAS  Google Scholar 

  • Wirak, D.O., Bayney, R., Ramabhadran, T.V., Fracasso, R.P., Hart, J.T., Hauer, P.E., Hsiau, P., Pekar, S.K., Scangos, G.A., Trapp, B.D., Unterbeck, A.J. (1991). Deposits of amyloid β protein in the central nervous system of transgenic mice. Science 253:323–325

    PubMed  CAS  Google Scholar 

  • Wischik, C.M., Crowther, R.A., Stewart, M., Roth, M. (1985). Subunit structure of paired helical filaments in Alzheimer’s disease. J. Cell Biol. 100:1905–1912

    PubMed  CAS  Google Scholar 

  • Wischik, C.M., Novak, M., Edwards, P.C., Klug, A., Tichelar, A. (1988). Structural characterization of the core of the paired helical filament. Proc. Natl. Acad. Sci. U.S.A. 85:4884–4888

    PubMed  CAS  Google Scholar 

  • Wisniewski, H.M., Terry, R.D. (1973). Reexamination of the pathogenesis of the senile plaque. Progress in Neuropathology. H.M. Zimmerman (ed). Grune and Stratton, New York, pp 1–26

    Google Scholar 

  • Wisniewski, H.M., Kozlowski, P.B. (1982). Evidence for blood-brain barrier changes in senile dementia of the Alzheimer type (SDAT). Ann. N.Y. Acad. Sci. 396:119–189

    PubMed  CAS  Google Scholar 

  • Wisniewski, H.M., Narang, J.K., Terry, R.D. (1976). Neurofibrillary tangles of paired helical filaments. J. Neurol. Sci. 27:173–181

    PubMed  CAS  Google Scholar 

  • Wisniewski, H.M., Moretz, R.C., Lossinsky, A.S. (1981). Evidence for induction of localized amyloid deposits and neuritic plaques by an infectious agent. Ann. Neurol. 10:517–522

    PubMed  CAS  Google Scholar 

  • Wong, C.W., Quaranta, V., Glenner, G.G. (1985). Neuritic plaques and cerebrovascular amyloid in Alzheimer disease are antigenically related. Proc. Natl. Acad. Sci. U.S.A. 82:8729–8732

    PubMed  CAS  Google Scholar 

  • Yamada, T., Sasaki, H., Furuya, H., Miyata, T., Goto, I., Sakaki, Y. (1987). Complementary DNA for the mouse homolog of the human amyloid beta protein precursor. Biochem. Biophys. Res. Commun. 149:665–671

    PubMed  CAS  Google Scholar 

  • Yankner, B.A., Villa-Komaroff, L., Neve, R.L. (1988). The biological activity of Alzheimer’s amyloid. Soc. Neurosci. 14:896 (abstract)

    Google Scholar 

  • Yankner, B.A., Dawes, L.R., Fisher, S., Villa-Komaroff, L., Oster-Granite, M.L., Neve, R. (1989). Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science 245:417–420

    PubMed  CAS  Google Scholar 

  • Yankner, B.A., Duffy, L.K., Kirschner, D.A. (1990). Neurotrophic and neurotoxic effects of amyloid β protein: Reversal by tachykinin neuropeptides. Science 250:279–282

    PubMed  CAS  Google Scholar 

  • Zain, S.B., Salim, M., Chou, W.-G., Sajdel-Sulkowska, E.M., Majocha, R.E., Marotta, C.A. (1988). Molecular cloning of amyloid cDNA derived from mRNA of the Alzheimer brain. Coding and non-coding regions of the fetal precursor mRNA are expressed in the Alzheimer cortex. Proc. Natl. Acad. Sci. U.S.A. 85:929–933

    PubMed  CAS  Google Scholar 

  • Zain, S.B., Chou, W.G., Majocha, R.E., Ventosa-Michelman, M., Marotta, C.A. (1989). Genetically engineered cells that overexpress amyloid A4 (beta amyloid) of Alzheimer disease. American Association of Neuropathologists Annual Meeting abstract 103. J. Neuropathol. Exp. Neurol. 48:335

    Google Scholar 

  • Zimmerman, K., Herget, T., Salbaum, J.M., Schubert, A., Hilbich, C., Cramer, M., Masters, C.L., Multhaup, G., Kang, J., Lamaire, H.G. (1988). Localization of the putative precursor of Alzheimer’s disease-specific amyloid at nuclear envelopes of adult human muscle. EMBO J. 7:367–372

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marotta, C.A., Majocha, R.E. & Tate, B. Molecular and cellular biology of Alzheimer amyloid. J Mol Neurosci 3, 111–125 (1992). https://doi.org/10.1007/BF02919403

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02919403

Keywords

Navigation