Skip to main content
Log in

Effect of simulated American, Bulgarian, and Japanese human diets and of selenium supplementation on the incidence of virally induced mammary tumors in female mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In attempts to simulate the effects of diet on human breast cancer development groups of female C3H mice infected with mammary tumor virus (MMTV-) were maintained on diets formulated to resemble the typical American, Bulgarian, and Japanese human diets. The incidence of mammary tumors was the highest (84%) in group of mice receiving the simulated meat- and fat-rich American diet, which was also low in selenium (Se content: 0.15 ppm). The appearance of mammary tumors was delayed in the mice maintained on the simulated Bulgarian diet, and the final tumor incidence (27%) paralleled the correspondingly lower Bulgarian breast cancer incidence. The simulated Bulgarian diet contained more Se (0.25 ppm), and was lower in fat, meat, and sugar and higher in complex carbohydrates (cereals) than the simulated American diet. In the mice fed the simulated Japanese diet, the appearance of mammary tumors was also delayed, and the tumor incidence was diminished to 47%. In this diet, fish meal was a major source of Se, which is known to have low bioavailability. Additional supplementation of the Japanese-type diet with bioavailable Se (1 ppm) lowered the tumor incidence to 10%. Based on these studies, recommendations are made for breast cancer risk reduction by dietary means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Tannenbaum,Am. J. Cancer 38, 335 (1940).

    CAS  Google Scholar 

  2. A. Tannenbaum,Cancer Res. 2, 460 (1942).

    CAS  Google Scholar 

  3. A. Tannenbaum and H. Silverstone,Cancer Res. 9, 724 (1949).

    PubMed  CAS  Google Scholar 

  4. A. Tannenbaum,Cancer Res. 2, 468 (1942).

    CAS  Google Scholar 

  5. K. K. Carroll and H. T. Khor,Prog. Biochem. Pharmacol. 10, 308 (1975).

    PubMed  CAS  Google Scholar 

  6. G. D. Hopkins and K. K. Carroll,J. Natl. Canc. Inst. 63, 1009 (1979).

    Google Scholar 

  7. S. H. Waxler, G. Becher, and S. L. Beal,Proc. Soc. Exp. Biol. Med. 162, 365 (1979).

    PubMed  CAS  Google Scholar 

  8. A. E. Rogers and W. C. Wetsel,Cancer Res. 41, 3735 (1981).

    PubMed  CAS  Google Scholar 

  9. S. K. Hoehn and K. K. Carroll,Nutr. Cancer 1, 27 (1979).

    CAS  Google Scholar 

  10. B. S. Reddy, T. Narisawa, and J. H. Weisburger,J. Natl. Cancer Inst. 57, 567 (1976).

    PubMed  CAS  Google Scholar 

  11. D. S. Gridley, J. D. Kettering, J. M. Slater, and R. L. Nutter,Cancer Lett. 19, 133 (1983).

    Article  PubMed  CAS  Google Scholar 

  12. G. N. Schrauzer,Adv. in Nutr. Res., (H. H. Draper, ed., Plenum, New York, 1979, vol. 2, 219–244, and references therein.)

    Google Scholar 

  13. G. N. Schrauzer and D. Ishmael,Ann. Clin. Lab. Sci. 4, 441 (1974).

    PubMed  CAS  Google Scholar 

  14. G. N. Schrauzer, J. E. McGinness, and K. Kuehn,Carcinogenesis 1, 199 (1980).

    Article  CAS  Google Scholar 

  15. D. Medina and F. Shepherd,Canc. Lett. 8, 241 (1980).

    Article  CAS  Google Scholar 

  16. G. N. Schrauzer, D. A. White, and C. J. Schneider,Bioinorg. Chem. 6, 265 (1976).

    Article  PubMed  CAS  Google Scholar 

  17. G. N. Schrauzer, D. A. White, and C. J. Schneider,Bioinorg. Chem. 7, 35 (1977).

    Article  PubMed  CAS  Google Scholar 

  18. J. H. Lubin, P. E. Burns, W. J. Blot, R. G. Ziegler, A. W. Lees, and J. F. Fraumeni,Int. J. Cancer 28, 685 (1981).

    Article  PubMed  CAS  Google Scholar 

  19. G. N. Schrauzer,Med. Hypoth. 2, 39 (1976).

    Article  CAS  Google Scholar 

  20. Food balance Sheets 1964–66, Food and Agriculture Organization of the United Nations, Rome, 1971.

  21. M. J. Lyons and D. H. Moore,Nature (London),194, 1141 (1962).

    Article  CAS  Google Scholar 

  22. G. Seman, H. S. Gallagher, J. M. Lukeman, and L. Dmochowski,Cancer 28, 1431 (1971).

    Article  PubMed  CAS  Google Scholar 

  23. R. Mesa-Tejada, and S. Spiegelman,Ann. Clin. Lab. Science 9, 202 (1979).

    CAS  Google Scholar 

  24. D. W. Siemann,Rodent Tumor Models in Exp. Cancer Therapy, R. F. Kallman, ed., Pergamon, New York, 1987, pp. 12–15.

    Google Scholar 

  25. A. H. Cantor, P. D. Moorhead, and M. A. Musser,Selenium in Biology and Medicine, J. Spallholz, J. L. Martin, and H. E. Ganther, eds., Avi Publishing Co., Westport CT, 1981, pp. 192–202.

    Google Scholar 

  26. G. N. Schrauzer, K. Kuehn, and D. Hamm,Biol. Trace Elem. Res. 3, 185 (1981).

    Article  CAS  Google Scholar 

  27. W. J. Pories, W. D. DeWys, A. M. Flynn, E. G. Mansour, and W. H. Strain,Adv. Exp. Med. Biol. 91, 243 (1978).

    CAS  Google Scholar 

  28. G. N. Schrauzer, D. A. White, and C. J. Schneider,Bioinorg. Chem. 8, 387 (1978).

    Article  PubMed  CAS  Google Scholar 

  29. G. N. Schrauzer and D. A. White,Bioinorg. Chem. 8, 303 (1978).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrauzer, G.N., Molenaar, T., Kuehn, K. et al. Effect of simulated American, Bulgarian, and Japanese human diets and of selenium supplementation on the incidence of virally induced mammary tumors in female mice. Biol Trace Elem Res 20, 169–178 (1989). https://doi.org/10.1007/BF02919109

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02919109

Index Entries

Navigation